scholarly journals Thermal Monitoring for Metallic Additive Manufacturing Multi-Beads Multi-Layers Parts

Author(s):  
Matthieu Rauch ◽  
Jean-Yves Hascoet ◽  
Clement Rousseau ◽  
Guillaume Ruckert
2020 ◽  
Vol 50 (9) ◽  
pp. 090007
Author(s):  
FeiYu XIONG ◽  
JiaWei CHEN ◽  
ChenYang HUANG ◽  
YanPing LIAN

Author(s):  
Zhuo Wang ◽  
Chen Jiang ◽  
Mark F. Horstemeyer ◽  
Zhen Hu ◽  
Lei Chen

Abstract One of significant challenges in the metallic additive manufacturing (AM) is the presence of many sources of uncertainty that leads to variability in microstructure and properties of AM parts. Consequently, it is extremely challenging to repeat the manufacturing of a high-quality product in mass production. A trial-and-error approach usually needs to be employed to attain a product with high quality. To achieve a comprehensive uncertainty quantification (UQ) study of AM processes, we present a physics-informed data-driven modeling framework, in which multi-level data-driven surrogate models are constructed based on extensive computational data obtained by multi-scale multi-physical AM models. It starts with computationally inexpensive metamodels, followed by experimental calibration of as-built metamodels and then efficient UQ analysis of AM process. For illustration purpose, this study specifically uses the thermal level of AM process as an example, by choosing the temperature field and melt pool as quantity of interest. We have clearly showed the surrogate modeling in the presence of high-dimensional response (e.g. temperature field) during AM process, and illustrated the parameter calibration and model correction of an as-built surrogate model for reliable uncertainty quantification. The experimental calibration especially takes advantage of the high-quality AM benchmark data from National Institute of Standards and Technology (NIST). This study demonstrates the potential of the proposed data-driven UQ framework for efficiently investigating uncertainty propagation from process parameters to material microstructures, and then to macro-level mechanical properties through a combination of advanced AM multi-physics simulations, data-driven surrogate modeling and experimental calibration.


2021 ◽  
Author(s):  
Quy Duc Thinh Pham ◽  
Truong Vinh Hoang ◽  
Quoc Tuan Pham ◽  
Than Phuc Huynh ◽  
Van Xuan Tran ◽  
...  

In this study, a data-driven deep learning model for fast and accurate prediction of temperature evolution and melting pool size of metallic additive manufacturing processes are developed. The study focuses on bulk experiments of the M4 high-speed steel material powder manufactured by Direct Energy Deposition. Under non-optimized process parameters, many deposited layers (above 30) generate large changes of microstructure through the sample depth caused by the high sensitivity of the cladding material on the thermal history. A 2D finite element analysis (FEA) of the bulk sample, validated in a previous study by experimental measurements, is able to achieve numerical data defining the temperature field evolution under different process settings. A Feed-forward neural networks (FFNN) approach is trained to reproduce the temperature fields generated from FEA. Hence, the trained FFNN is used to predict the history of the temperature fields for new process parameter sets not included in the initial dataset. Besides the input energy, nodal coordinates, and time, five additional features relating layer number, laser location, and distance from the laser to sampling point are considered to enhance prediction accuracy. The results indicate that the temperature evolution is predicted well by the FFNN with an accuracy of 99% within 12 seconds.


Metals ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 137 ◽  
Author(s):  
Ian Gibson ◽  
Amir Khorasani

The first modern additive manufacturing machines, developed in the early 1990s, primarily made parts using polymers [...]


2020 ◽  
Vol 12 (6) ◽  
pp. 168781402091695
Author(s):  
Asliah Seharing ◽  
Abdul Hadi Azman ◽  
Shahrum Abdullah

This review analyses the design, mechanical behaviors, manufacturability, and application of gradient lattice structures manufactured via metallic additive manufacturing technology. By varying the design parameters such as cell size, strut length, and strut diameter of the unit cells in lattice structures, a gradient property is obtained to achieve different levels of functionalities and optimize strength-to-weight ratio characteristics. Gradient lattice structures offer variable densification and porosities; and can combine more than one type of unit cells with different topologies which results in different performances in mechanical behavior layer-by-layer compared to non-gradient lattice structures. Additive manufacturing techniques are capable of manufacturing complex lightweight parts such as uniform and gradient lattice structures and hence offer design freedom for engineers. Despite these advantages, additive manufacturing has its own unique drawbacks in manufacturing lattice structures. The rules and strategies in overcoming the constraints are discussed and recommendations for future work were proposed.


Sign in / Sign up

Export Citation Format

Share Document