scholarly journals Bonded Tri-Material Specimen Subjected to Shear-Off Testing: Predicted Interfacial Stresses

2020 ◽  
Vol 4 (1) ◽  
Author(s):  
Suhir E
2019 ◽  
Vol 89 (6) ◽  
pp. 873
Author(s):  
Г.А. Малыгин ◽  
В.И. Николаев ◽  
В.М. Крымов ◽  
С.А. Пульнев ◽  
С.И. Степанов

AbstractWe have performed experimental and theoretical investigation of the anomalous form of the compression diagrams and shape memory restoration curves in Ni_49Fe_18Ga_27Co_6 alloy crystals deformed by uniaxial compression along the [011]_ A crystallographic direction ( A -austenite) in the temperature range of 200–350 K. It is found that in the investigated temperature range, all compression diagrams contain anomalous segments of smooth and sharp decrease in deforming stresses. It is shown that the segments of a smooth decrease in stress are associated with peculiarities in martensite reaction L1_2 → 14M, while segments of a sharp drop are due to instability of martensite reactions 14M → L1_0 and L1_2 → L1_0. A possible source of reaction instability is associated with interfacial stresses at the interfaces between the martensite and austenite phases (lamellas) due to different elastic moduli of contacting phases. The magnitude of these stresses is significant in the case of 14M → L1_0 and L1_2 → L1_0 transformations, which induces a sharp drop of the deforming stress, while the restoration of the shape memory effect is of a burst nature. It is established that the contribution of interfacial stresses to the free energy of martensite transformation is smaller than the dissipative (entropy) contribution to this energy; however, interfacial stresses higher than a certain threshold strongly affect transformation kinetics and, hence, determine the strongly anomalous shape of pseudoelastic deformation curves and burst restoration of the shape memory effect.


2011 ◽  
Vol 87 ◽  
pp. 63-70 ◽  
Author(s):  
Sujan Debnath ◽  
Muhammad Ekhlasur Rahman ◽  
Woldemichael Dereje Engida ◽  
M. V. V. Murthy ◽  
K.N. Seetharamu

An interfacial shearing and peeling stress model is proposed to account for different uniform temperatures and thickness wise linear temperature gradients in the layers. This upgraded model can be viewed as a more generic form to determine interfacial stresses under different temperature conditions in a bi-layered assembly. The selected shearing and peeling stress results are presented for the case of die and die attach as commonly seen in electronic packaging. The obtained results can be useful in interfacial stress evaluations and physical design of bi-material assemblies, which are used in microelectronics and photonic applications.


2020 ◽  
Vol 12 (06) ◽  
pp. 2050063
Author(s):  
S. C. Tseng ◽  
C. K. Chao ◽  
F. M. Chen

This paper presents an analytical solution of a coated square hole embedded in an isotropic infinite plate under a remote uniform heat flow. Based on conformal mapping, analytic continuation theorem and the alternation technique, temperature and stress functions are derived in a compact series form. Results of temperature contours and interfacial stresses are validated using the finite element method. The comparison indicates the high accuracy of the proposed method. Numerical results of both the interfacial normal and shear stresses for different properties and geometric parameters of a coated layer are provided in a graphical form. The results indicate that the interfacial stresses are highly dependent on the thermal expansion coefficient, thickness of the coating layer and shape factor of the coated square hole. In conclusion, the interfacial shear stresses exhibit a significant increase at the corners with abrupt geometrical changes, which would cause the delamination of the coating layer system. Furthermore, increasing the thickness of the coating layer and the shape factor results in a higher interfacial stress.


2018 ◽  
Vol 27 (1) ◽  
pp. 096369351802700 ◽  
Author(s):  
Samir Brairi ◽  
Bachir Kerboua ◽  
Ismail Bensaid

In this paper, a new analytical solution is presented to predict the interfacial stresses of a functionally graded beam reinforced by a prestressed CFRP plate under thermo-mechanical load. A finite element (FE) analysis is also employed to validate the results of the analytical solution, the results from both models agreed very closely. Also, a parametric study is carried out in order to identify the effects of various material and geometrical properties on the magnitude of interfacial stresses. The presented results show that the interfacial stresses are highly concentrated at the end of the laminate, which can lead to a debonding at this location. Also, the material and geometrical properties have a significant impact on the magnitude of interfacial stresses. This new research approaches the practical reality of the structures in their environment by taking into consideration a combination of neglected terms by the other studies. Therefore, the results presented in this paper can serve as a benchmark for future analyses of functionally graded beams strengthened by prestressed Carbon fibre-rein-forced polymer (CFRP) plates and improve the rehabilitation, mechanical and corrosion resistance.


2018 ◽  
Vol 27 (6) ◽  
pp. 096369351802700
Author(s):  
Samir Brairi ◽  
Bachir Kerboua ◽  
Ismail Bensaid

In this paper, a new analytical solution is presented to predict the interfacial stresses of a functionally graded beam reinforced by a prestressed CFRP plate under thermo-mechanical load. A finite element (FE) analysis is also employed to validate the results of the analytical solution, the results from both models agreed very closely. Also, a parametric study is carried out in order to identify the effects of various material and geometrical properties on the magnitude of interfacial stresses. The presented results show that the interfacial stresses are highly concentrated at the end of the laminate, which can lead to a debonding at this location. Also, the material and geometrical properties have a significant impact on the magnitude of interfacial stresses. This new research approaches the practical reality of the structures in their environment by taking into consideration a combination of neglected terms by the other studies. Therefore, the results presented in this paper can serve as a benchmark for future analyses of functionally graded beams strengthened by prestressed Carbon fibre-rein-forced polymer (CFRP) plates and improve the rehabilitation, mechanical and corrosion resistance.


Sign in / Sign up

Export Citation Format

Share Document