material specimen
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 10)

H-INDEX

4
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7483
Author(s):  
Karel Dvorak ◽  
Jana Dvorakova ◽  
Lucie Zarybnicka ◽  
Zdenek Horak

The presented text deals with research into the influence of the printing layers’ orientation on crack propagation in an AlSi10Mg material specimen, produced by additive technology, using the Direct Metal Laser Sintering (DMLS) method. It is a method based on sintering and melting layers of powder material using a laser beam. The material specimen is presented as a Compact Tension test specimen and is printed in four different defined orientations (topology) of the printing layers—0°, 45°, 90°, and twice 90°. The normalized specimen is loaded cyclically, where the crack length is measured and recorded, and at the same time, the crack growth rate is determined. The evaluation of the experiment shows an apparent influence of the topology, which is essential especially for possible use in the design and technical preparation of the production of real machine parts in industrial practice. Simultaneously with the measurement results, other influencing factors are listed, especially product postprocessing and the measurement method used. The hypothesis of crack propagation using Computer Aided Engineering/Finite Element Method (CAE/FEM) simulation is also stated here based on the achieved results.


2021 ◽  
Vol 8 ◽  
Author(s):  
Zhenze Yang ◽  
Markus J. Buehler

Transformer neural networks have become widely used in a variety of AI applications, enabling significant advances in Natural Language Processing (NLP) and computer vision. Here we demonstrate the use of transformer neural networks in the de novo design of architected materials using a unique approach based on text input that enables the design to be directed by descriptive text, such as “a regular lattice of steel”. Since transformer neural nets enable the conversion of data from distinct forms into one another, including text into images, such methods have the potential to be used as a natural-language-driven tool to develop complex materials designs. In this study we use the Contrastive Language-Image Pre-Training (CLIP) and VQGAN neural networks in an iterative process to generate images that reflect text prompt driven materials designs. We then use the resulting images to generate three-dimensional models that can be realized using additive manufacturing, resulting in physical samples of these text-based materials. We present several such word-to-matter examples, and analyze 3D printed material specimen through associated additional finite element analysis, especially focused on mechanical properties including mechanism design. As an emerging new field, such language-based design approaches can have profound impact, including the use of transformer neural nets to generate machine code for 3D printing, optimization of processing conditions, and other end-to-end design environments that intersect directly with human language.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5683
Author(s):  
Alexander Arbogast ◽  
Sougata Roy ◽  
Andrzej Nycz ◽  
Mark W. Noakes ◽  
Christopher Masuo ◽  
...  

This work investigated the linear thermal expansion properties of a multi-material specimen fabricated with Invar M93 and A36 steel. A sequence of tests was performed to investigate the viability of additively manufactured Invar M93 for lowering the coefficient of thermal expansion (CTE) in multi-material part tooling. Invar beads were additively manufactured on a steel base plate using a fiber laser system, and samples were taken from the steel, Invar, and the interface between the two materials. The CTE of the samples was measured between 40 °C and 150 °C using a thermomechanical analyzer, and the elemental composition was studied with energy dispersive X-ray spectroscopy. The CTE of samples taken from the steel and the interface remained comparable to that of A36 steel; however, deviations between the thermal expansion values were prevalent due to element diffusion in and around the heat-affected zone. The CTEs measured from the Invar bead were lower than those from the other sections with the largest and smallest thermal expansion values being 10.40 μm/m-K and 2.09 μm/m-K. In each of the sections, the largest CTE was measured from samples taken from the end of the weld beads. An additional test was performed to measure the aggregate expansion of multi-material tools. Invar beads were welded on an A36 steel plate. The invar was machined, and the sample was heated in an oven from 40 °C and 160 °C. Strain gauges were placed on the surface of the part and were used to analyze how the combined thermal expansions of the invar and steel would affect the thermal expansion on the surface of a tool. There were small deviations between the expansion values measured by gauges placed in different orientations, and the elongation of the sample was greatest along the dimension containing a larger percentage of steel. On average, the expansion of the machined Invar surface was 42% less than the expansion of the steel surface. The results of this work demonstrate that additively manufactured Invar can be utilized to decrease the CTE for multi-material part tooling.


Author(s):  
Amit Kumar

In this work we have analyzed the effect heat treatment on properties of spring shape steel specimens under various heat treatment processes. Specimen was subjected to heat treatment in electric muffle furnace. Heat treatment temperature, soaking time and cooling rate were selected as per phase diagram of specimen material. Specimen was tested for mechanical properties before and after heat treatment. Two processes annealing and normalizing compared with respect to their effect on properties of spring shape specimens in reference with standard data for steel used.


2020 ◽  
Vol 37 (3) ◽  
pp. 231-238
Author(s):  
Sohyang Lee ◽  
Chaeeun Shin ◽  
Minji Jung ◽  
MinSoo Park

2019 ◽  
Vol 85 (4) ◽  
pp. 50-56
Author(s):  
Sergey V. Suknev

The study is aimed at the development of the new failure criteria for quasi-brittle materials in conditions of stress concentration. The possibility of using non-local failure criteria for description of the brittle, quasi-brittle and ductile fracture of the materials with notches is analyzed. The general feature of these criteria consists in the introduction of the internal dimension characterizing the structure of the material, which provides the possibility of describing a large-scale effect in conditions of the stress concentration and thereby expand the area of their application compared to traditional criteria though it is limited to the cases of brittle or quasi-brittle fracture with a small pre-ffacture zone. To broaden the scope of their application to quasi-brittle fracture with a developed pre-fracture zone we propose to abandon the hypothesis about the size of the pre-fracture zone as a constant related only to the structure of the material. A number of the new nonlocal criteria, which are the development of the criteria of the mean stress and fictitious crack, are developed, substantiated from the physical standpoint, and proved experimentally. These criteria contain a complex parameter characterizing the size of the pre-fracture zone and taking into account not only the structure, but also the ductile properties of the material, specimen geometry and loading conditions. The expressions for the critical pressure in the problem of tensile crack formation upon compression of the samples of geomaterials with a circular hole are derived. The results of calculations match rather well the experimental data on the destruction of drilled gypsum slabs.


2019 ◽  
Vol 300 ◽  
pp. 18003 ◽  
Author(s):  
Pedro R. da Costa ◽  
Henrique Soares ◽  
Luís Reis ◽  
Manuel Freitas

Ultrasonic fatigue testing is a relative recent fatigue methodology that uses resonant principles for the induction of stress cycles in a specific designed material specimen. This experimental method can apply very high cycle frequency, the most common frequency being 20 kHz, and was created with the main purpose of studying material fatigue life in the Very High Cycle Fatigue regime between 107 and 109 cycles with a higher performance of time and energy wise in comparison to conventional servo-hydraulic machines. In this study an improvement of an already built multiaxial ultrasonic fatigue machine in the Instituto Superior Técnico laboratories was carried out to specific designed specimens and afterwards a fatigue study was made for a material of a worn-out railway wheel. The particular design of the specimen was achieved by numerical and experimental analysis based on previous experiments and components. Thermographic imaging and the application of rosette strain gauges to the main throat of the specimens were conducted in order to validate the improved specimen design and to understand the real induced stresses on the specimen. Afterwards fatigue tests were conducted for several specimens for a wide range of stresses with a stress ratio R=-1 and an axial vs shear stress ratio of around 0.58. Results were analysed and fracture analysis was also carried out.


Sign in / Sign up

Export Citation Format

Share Document