scholarly journals Impact of a Change from an Aluminium- to a Composite-Type Aircraft on Wind-Assisted Aviation-Fuel Fire Dynamics - a Numerical Study

2020 ◽  
Vol 4 (2) ◽  
Author(s):  
Wang HY ◽  
Wang GD
Fluids ◽  
2021 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Kamel Guedri ◽  
Abdullah A. Abdoon ◽  
Omar S. Bagabar ◽  
Mowffaq Oreijah ◽  
Abdessattar Bouzid ◽  
...  

Tunnel fires are one of the most dangerous catastrophic events that endanger human life. They cause damage to infrastructure because of the limited space in the tunnel, lack of escape facilities, and difficulty that intervention forces have in reaching the fire position, especially in highly crowded areas, such as Makkah in the Hajj season. Unfortunately, performing experimental tests on tunnel fire safety is particularly challenging because of the prohibitive cost, limited possibilities, and losses that these tests can cause. Therefore, large-scale modeling, using fire dynamic simulation, is one of the best techniques used to limit these costs and losses. In the present work, a fire scenario in the Makkah’s King Abdulaziz Road tunnel was analyzed using the Fire Dynamics Simulator (FDS). The effects of the heat released per unit area, soot yield, and CO yield on the gas temperature, radiation, concentrations of the oxygen and combustion products CO and CO2, and air velocity were examined. The results showed that the radiation increased with the heat released per unit area and the soot yield affected all parameters, except the oxygen concentration and air velocity. The CO yield significantly affects CO concentration, and its influence on the other studied parameters is negligible. Moreover, based on the validation part, the results proved that FDS have limitations in tunnel fires, which impact the smoke layer calculation at the upstream zone of the fire. Therefore, the users or researchers should carefully be concerned about these weaknesses when using FDS to simulate tunnel fires. Further comprehensive research is crucial, as tunnel fires have severe impacts on various aspects of people’s lives.


Author(s):  
Brady Manescau ◽  
Khaled Chetehouna ◽  
Quentin Serra ◽  
Aijuan Wang ◽  
Eric Florentin

In this chapter, a numerical investigation is presented in order to highlight the effects of outdoor wind on smoke movements along a corridor in a compartment. For this, the Computational Fluid Dynamics (CFD) code, fire dynamics simulator (FDS), was used to model the reactive flows in interaction with outdoor wind. The wind velocity is taken between 0 and 12.12 m/s, based on the experimental result data come from the work of Li et al. was performed. From numerical data, it was found that smoke stratification state in the corridor depends on Froude number (Fr) and it can be divided into three cases: stable buoyant stratification (Fr < 0.38), unstable buoyant stratification (0.38 ≤ Fr < 0.76), and failed stratification (Fr ≥ 0.76). When Fr ≥ 0.76, smoke stratification is completely disturbed and smoke occupies the entire volume of the compartment, highlighting a risk of toxicity to people. Indeed, it was observed that the velocity of the outdoor wind influences strongly the concentration of O2, CO2, CO, and visibility in the corridor and smoke exhaust. Moreover, for the input data used in the numerical modelling, the global sensitivity analysis demonstrated that the main parameters affecting the smoke temperature near the ceiling are the mass flux of fuel and the activation energy.


2020 ◽  
Vol 34 (4) ◽  
pp. 7-12
Author(s):  
Gwon Hyun Ko

A numerical study was conducted to investigate the effects of the spray characteristics of water mist on the attenuation of thermal radiation. The attenuation process of the thermal radiation, generated from a hot surface panel, passing through the water mist was calculated via Fire Dynamics Simulator (FDS), and the effects of the flow rate, droplet mean diameter, and spray injecting angle of the water mist were analyzed. The results indicated that the increase in flowrate and decrease in droplet size led to an increase in the attenuation of thermal radiation. As the thermal radiation passed through the spray droplets, the effect of the spatial distribution of spray droplets was verified by calculating the thermal radiation attenuation at different spray injecting angles. The results indicated that the radiation attenuation increases as the spray angle increases. This implies that a wider distribution of spray droplets, irrespective of the droplet size and flowrate, increases the attenuation effect on thermal radiation.


2014 ◽  
Vol 953-954 ◽  
pp. 191-194
Author(s):  
Ming Yung Wang ◽  
Hsiao Kang Ma

In this study, the gasification processes of different Taiwan’s agriculture wastes were studied by using software of Fire Dynamics Simulator (FDS), which developed by American National Institute of Standards and Technology (NIST), to build a model of downdraft fixed bed gasifier. Details of the operation condition for the Taiwan’s agriculture waste biomass fuel in the gasifier were obtained. They include traction fan speed, leakage air, internal temperature, moisture, and cold gas efficiency. The simulated results are found in small type fixed bed biomass gasifier under traction fan initial speed is 0.2m/s, the leakage air in the gasification area is less than 10% of the amount of wind quantity by traction fan and moisture content of solid biomass is limited at 10% ~ 20%(vol.) that temperature in gasification zone with steady supply fuel gas condition is near 850~900°C.


2020 ◽  
Vol 194 ◽  
pp. 05061
Author(s):  
GENG Pengqiang ◽  
WANG Zihao ◽  
WENG Miaocheng ◽  
LIU Fang

.This paper uses Fire Dynamics Simulator (FDS) to study the effect of the longitudinal distance from the shaft to the fire source on the natural smoke exhaust of the tunnel fire with one closed portal, and analyzes the temperature distribution of the smoke and the shaft’s smoke exhaust efficiency. The results show that when the shaft is located downstream of the fire source (Ds<0), with the increase of the distance from the shaft to the fire source, the smoke exhaust efficiency decreases first and then stabilizes at a fixed value. At this time, the ceiling temperature attenuation’s coefficient at upstream of the fire source is only related to the heat release rate of the fire source (HRR). When the shaft is located upstream of the fire source (Ds>0), the smoke exhaust efficiency increases slightly with the increase of the distance from the shaft to the fire source, but the overall value is relatively small. When HRR is fixed, the shaft located downstream of the fire source has a higher smoke exhaust efficiency. As the distance between the shaft and the fire source increases, the plug phenomenon decreases.


2017 ◽  
Vol 8 (4) ◽  
pp. 440-458
Author(s):  
Aristides Lopes da Silva ◽  
Shengwu Xiong ◽  
Hussain Aamir

Purpose This work aims to report the effect of different inlet air velocity settings, and the position of the inlet areas under fire-induced conditions in stairwells. Design/methodology/approach The results are evaluated both experimentally and numerically. In sequence, the study also describes the results of three tests under different ventilation conditions, which were performed by simulating a fire of 0.9 m diameter in a stairwell access door. Detailed transient measurements of air temperature in the walls, air velocity settings at the ventilation outlet, smoke temperature through the fans and pressure through the exhaust fans were recorded for the study. Findings These data could be used as benchmark for future numerical validation studies. Based on computational fluid dynamics, the tests were performed using fire dynamics simulator codes, to compare the results of tests and simulations. Originality/value The numerical study was performed in confined floors close to the test areas of a typical stairwell, with different vents and a source of fire. The results show that the lack of symmetry in the air vents settings has greater influence on the plume than the total area of the air inlet.


2021 ◽  
Vol 13 (13) ◽  
pp. 7406
Author(s):  
Martin Lyubomirov Ivanov ◽  
Wei Peng ◽  
Qi Wang ◽  
Wan Ki Chow

Smoke extraction systems, either static with natural ventilation, or dynamic with mechanical ventilation are required to keep smoke layer at high levels in many tall atria. It is observed that a design fire with high heat release rate (HRR) is commonly used for designing natural vents, but a low HRR is used for mechanical ventilation system. This will not produce a sustainable environment. There are no internationally agreed on design guides to determine the HRR in the design fire for different extraction systems and scenarios. This issue will be studied using a Computational Fluid Dynamics (CFD)-based software, the Fire Dynamics Simulator (FDS) version 6.7.1. Simulations on natural smoke filling, static and dynamic smoke extractions were carried out in a big example atrium. CFD-FDS predictions were compared with previous full-scale burning tests. Results confirmed that static smoke extraction is a good option for big fires, and a dynamic system is best for small fires. A sustainable new hybrid design combining the advantages of static and dynamic systems is proposed, which could result in a lower smoke temperature and higher smoke layer interface height, indicating a better extraction design.


Sign in / Sign up

Export Citation Format

Share Document