Root tissue strength and storage losses of sugar beet varieties as affected by N application and irrigation

2021 ◽  
pp. 30-37
Author(s):  
Christa M. Hoffmann ◽  
Gunnar Kleuker ◽  
André Wauters ◽  
William English ◽  
Martijn Leijdekkers

There is some evidence that sugar beet root tissue strength affects damage susceptibility and storage losses. This study aimed at analyzing the effect of N application and of irrigation on tissue strength of sugar beet varieties, on root composition, and on root tip breakage and storage losses. For this purpose, field trials in six replicates with three sugar beet varieties were carried out with three N doses in The Netherlands and Belgium in 2018 and 2019, alternatively with three irrigation treatments in Sweden in 2018 and 2019. Results show a low impact of N application and irrigation on puncture resistance, tissue firmness and compressive strength of the roots, while varieties differed always stronger and significantly. Cell wall composition (pectin, hemicellulose, cellulose, lignin) did not differ markedly in roots from different environments (sites, years) and varieties, giving no explanation for differences in tissue strength. However, the percentage of cell wall material (AIR, marc) and of dry matter were higher in roots with higher tissue strength. Root tip breakage and sugar losses during storage tended to be lower when root compressive strength of varieties was higher. Hence, root tissue strength could serve as an indirect selection criterion for reduced damage susceptibility and improved storability of sugar beet varieties.

2018 ◽  
pp. 639-647 ◽  
Author(s):  
Christa Hoffmann

Harvest quality of sugar beet varies according to soil conditions, harvester type and setting, and variety, too. Harvest quality may affect storage losses, in particular when injuries occur. To determine the harvest quality of commercial sugar beet and to quantify resulting storage losses, 92 commercial sugar beet clamps were sampled across Germany and information about harvest conditions were gathered. At IfZ, soil tare, leaf residues, topping diameter, root tip breakage and surface damage of the beets were determined. The beets were stored in 6 replicates in a climate container at 9°C for 10 weeks. The results demonstrate a rather good harvesting quality of sugar beet in Germany. Soil moisture at harvest did not affect harvest quality and storage losses. Very light, but also heavier soils lead to inferior harvest quality (soil tare, root tip breakage, damage) and slightly higher storage losses compared to the typical loam soils. Significant differences occurred between the three harvester types (companies). In general, high root tip breakage and severe surface damage of the beet was related to a high infestation with mould and rots, high invert sugar contents after storage and high sugar losses. Out of the five most planted varieties, in particular one turned out to be very susceptible to damage, resulting in high storage losses. The factor analysis suggests that the effect of harvester / harvester setting and of variety is more important for harvest quality and storage losses of sugar beet than soil conditions at harvest. Therefore, attention should be paid to optimize these conditions.


2016 ◽  
pp. 625-632 ◽  
Author(s):  
Christa Hoffmann ◽  
Katharina Schnepel

Good storability of sugar beet is of increasing importance, not only to reduce sugar losses, but also with regard to maintaining the processing quality. Genotypic differences are found in storage losses. However, it is not clear to which extent damage may contribute to the genotypic response. The aim of the study was to quantify the effect of root tip breakage on storage losses of different genotypes. For that purpose, in 2012 and 2013, six sugar beet genotypes were grown in field trials at two locations. After lifting roots were damaged with a cleaning device. They were stored for 8 and 12 weeks, either under controlled conditions in a climate container at constant 8°C, or under ambient temperature in an outdoor clamp. The close correlation underlines that storage losses under controlled conditions (constant temperature) can well be transferred to conditions in practice with fluctuating temperature. The strongest impact on invert sugar accumulation and sugar loss after storage resulted from storage time, followed by damage and growing environment (year × growing site). Cleaning reduced soil tare but increased root tip breakage, in particular for genotypes with low marc content. During storage, pathogen infestation and invert sugar content of the genotypes increased with root tip breakage, but the level differed between growing environments. Sugar loss was closely related to invert sugar accumulation for all treatments, genotypes and environments. Hence, it can be concluded that root tip breakage contributes considerably to storage losses of sugar beet genotypes, and evidently genotypes show a different susceptibility to root tip breakage which is related to their marc content. For long-term storage it is therefore of particular importance to avoid damage during the harvest operations and furthermore, to have genotypes with high storability and low susceptibility to damage.


1972 ◽  
Vol 50 (8) ◽  
pp. 1705-1709 ◽  
Author(s):  
William M. Bugbee

Phoma betae from decayed sugar beet storage root tissue grew most rapidly in culture at 15C but produced more polygalacturonase (PG) at 20C. When the fungus was supplied with six different nitrogen sources, it produced the most PG on (NH4)2SO4.Assays of dialyzed culture filtrates using sodium polypectate and pectin or cell wall material from storage roots as the carbon sources showed the production of exopolygalacturonase (exo-PG) and endopolygalacturonate trans-eliminase (endo-PGTE). No pectin methyl esterase was detected. Exo-PG and endo-PGTE also were present in decayed sugar beet tissue. Only endo-PGTE was detected within 3 mm of tissue surrounding the rotted area.In culture, cell wall material from the susceptible variety A58 induced more endo-PGTE formation than the resistant 2B. But 2B induced more exo-PG formation than A58. It is suggested that endo-PGTE plays a major role in cell wall degradation because pH 7.5 was optimum for tissue maceration and pH 8.5 for enzyme activity and the advancing margins of rotted tissue contained only endo-PGTE.


2018 ◽  
pp. 474-484 ◽  
Author(s):  
Christa Hoffmann ◽  
Meik Engelhardt ◽  
Michael Gallmeier ◽  
Michael Gruber ◽  
Bernward Märländer

Damage resulting from harvest operations increases the storage losses of sugar beet. Because of different equipment, the kind and extent of damage may differ between harvesting systems. The objective of the study was to analyze (I) the impact of different harvesting systems and cleaning intensities on damages of sugar beet, and furthermore, (II) the effect of these damages on storage losses. In 2015 and 2016 at four sites, two sugar beet varieties were harvested with two six-row harvesters (axial rollers versus turbines for cleaning) using three cleaning intensities with three replicates in tracks of 200m length. Roots were stored in a climate container at 9°C for 5 and 12 weeks. The results show that the diameter of root tip breakage and surface damage increased with cleaning intensity. Marked differences occurred among varieties and sites. The factor analysis indicates that the extent of damage (root tip breakage, surface damage) had a considerable impact on the infestation with mold and rots, the accumulation of invert sugar and sugar losses after storage. However, the higher root tip breakage of beets harvested by harvester2 was accompanied by lower sugar losses than in harvester1 after 12weeks storage, in particular with the aggressive cleaning intensity. The marked impact of the cleaning intensity emphasizes the importance of the operator and of the optimal setting of the harvester for a good harvest quality and thus storability of sugar beet.


2020 ◽  
pp. 435-443
Author(s):  
Gunnar Kleuker ◽  
Christa M. Hoffmann

Harvesting and cleaning of sugar beet lead to root damage, which increases storage losses due to wound healing and by causing entry points for pathogens. This study aimed at quantifying the effects of variety and site on the tissue strength of sugar beet roots, and moreover, to evaluate the impact of tissue strength on damage and storage losses. For this purpose, field trials with three varieties were carried out at six sites, three in Germany and the others in Belgium, the Netherlands and Sweden in 2018. Texture analysis and storage trials were conducted in Göttingen. Puncture and compression measurements revealed differences in tissue strength between varieties and sites. Drought stress during the vegetation period significantly reduced the tissue strength. Tissue strength of sugar beet roots turned out to be an environmental stable variety characteristic. It is not possible to draw conclusions from tissue strength to storage losses at a site, since many other factors, such as growing conditions, diseases and damage due to harvester settings have a strong impact. However, tissue strength might be an indicator for damage susceptibility and storage losses of sugar beet varieties.


Plant Disease ◽  
2008 ◽  
Vol 92 (4) ◽  
pp. 581-587 ◽  
Author(s):  
Carl A. Strausbaugh ◽  
Eugene Rearick ◽  
Stacey Camp ◽  
John J. Gallian ◽  
Alan T. Dyer

Rhizomania caused by Beet necrotic yellow vein virus (BNYVV) and storage losses are serious sugar beet production problems. To investigate the influence of BNYVV on storability, six sugar beet cultivars varying for resistance to BNYVV were grown in 2005 and 2006 in southern Idaho fields with and without BNYVV-infested soil. At harvest, samples from each cultivar were placed in an outdoor ventilated pile in Twin Falls, ID and were removed at 40-day intervals starting at the end of October. After 144 and 142 days in storage, sugar reduction across cultivars averaged 20 and 13% without and 68 and 21% with BNYVV for the 2005 and 2006 roots, respectively. In the December samplings, frozen root area was 1 and 2% without and 25 and 41% with BNYVV for the 2005 and 2006 roots, respectively. Root rot was always worse with stored roots from BYNVV-infested soil in December, January, and February samplings. Root weight loss was variable in 2005; however, in 2006, an increase in weight reduction always was associated with BNYVV-infested roots. In order to prevent losses in rhizomania-infested areas, cultivars should be selected for storability as well as rhizomania resistance.


Author(s):  
A. E. Sowers ◽  
E. L. Thurston

Plant stinging emergences exhibit functional similarities in that they all elicit a pain response upon contact. A stinging emergence consists of an elongated stinging cell and a multicellular pedestal (Fig. 1). A recent ultrastructural investigation of these structures has revealed the ontogeny and morphology of the stinging cells differs in representative genera in the four plant families which possess such structures. A unique feature of the stinging cell of Urtica dioica is the presence of a siliceous cell wall in the apical portion of the cell. This rigid region of the cell wall is responsible for producing the needle-like apparatus which penetrates the skin. The stinging cell differentiates the apical bulbous tip early in development and the cell continues growth by intercalary addition of non-silicified wall material until maturity.The uppermost region of the stinging cell wall is entirely composed of silica (Fig. 2, 3) and upon etching with a 3% solution of HF (5 seconds), the silica is partially removed revealing the wall consisting of individualized silica bodies (Fig. 4, 5).


2019 ◽  
pp. 392-400 ◽  
Author(s):  
Gunnar Kleuker ◽  
Christa M. Hoffmann

The harvest of sugar beet leads to root tip breakage and surface damage through mechanical impacts, which increase storage losses. For the determination of textural properties of sugar beet roots with a texture analyzer a reliable method description is missing. This study aimed to evaluate the impact of washing, soil tare, storage period from washing until measurement, sample distribution and number of roots on puncture and compression measurements. For this purpose, in 2017 comprehensive tests were conducted with sugar beet roots grown in a greenhouse. In a second step these tests were carried out with different Beta varieties from a field trial, and in addition, a flexural test was included. Results show that the storage period after washing and the sample distribution had an influence on the puncture and compression strength. It is suggested to wash the roots by hand before the measurement and to determine the strength no later than 48 h after washing. For reliable and comparable results a radial distribution of measurement points around the widest circumference of the root is recommended for the puncture test. The sample position of the compression test had an influence on the compressive strength and therefore, needs to be clearly defined. For the puncture and the compression test it was possible to achieve stable results with a small sample size, but with increasing heterogeneity of the plant stand a higher number of roots is required. The flexural test showed a high variability and is, therefore, not recommended for the analysis of sugar beet textural properties.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Angus E. Rae ◽  
Vivien Rolland ◽  
Rosemary G. White ◽  
Ulrike Mathesius

Abstract Background The formation of infection threads in the symbiotic infection of rhizobacteria in legumes is a unique, fascinating, and poorly understood process. Infection threads are tubes of cell wall material that transport rhizobacteria from root hair cells to developing nodules in host roots. They form in a type of reverse tip-growth from an inversion of the root hair cell wall, but the mechanism driving this growth is unknown, and the composition of the thread wall remains unclear. High resolution, 3-dimensional imaging of infection threads, and cell wall component specific labelling, would greatly aid in our understanding of the nature and development of these structures. To date, such imaging has not been done, with infection threads typically imaged by GFP-tagged rhizobia within them, or histochemically in thin sections. Results We have developed new methods of imaging infection threads using novel and traditional cell wall fluorescent labels, and laser confocal scanning microscopy. We applied a new Periodic Acid Schiff (PAS) stain using rhodamine-123 to the labelling of whole cleared infected roots of Medicago truncatula; which allowed for imaging of infection threads in greater 3D detail than had previously been achieved. By the combination of the above method and a calcofluor-white counter-stain, we also succeeded in labelling infection threads and plant cell walls separately, and have potentially discovered a way in which the infection thread matrix can be visualized. Conclusions Our methods have made the imaging and study of infection threads more effective and informative, and present exciting new opportunities for future research in the area.


Sign in / Sign up

Export Citation Format

Share Document