Post-Dorian shoreline change at Cape Hatteras National Seashore: 2019 report

2021 ◽  
Lisa Baron

In 2018 and 2019 the Southeast Coast Network (SECN), with assistance from park staff, collected long-term shoreline monitoring data at Cape Hatteras National Seashore as part of the National Park Service (NPS) Vital Signs Monitoring Program. Monitoring was conducted following methods developed by the NPS Northeast Coastal and Barrier Network and consisted of mapping the high-tide swash line using a Global Positioning System unit in the spring of each year (Psuty et al. 2010). Shoreline change was calculated using the Digital Shoreline Analysis System (DSAS) developed by the United States Geological Survey (USGS; Himmelstoss et al. 2018). Following the same field methods used for monitoring long-term shoreline change, geospatial data were collected as part of the Hurricane Dorian (or Dorian) Incident Response from September 12–16, 2019. This report summarizes the post-Dorian data and the previous two shoreline data collection efforts (spring 2019 and fall 2018).

2022 ◽  
Elizabeth Schmidt

In 2020 and 2021 the Southeast Coast Network (SECN) collected shoreline data at Fort Matanzas National Monument as a part of the NPS Vital Signs Monitoring Program. Monitoring was conducted following methods developed by the National Park Service Northeast Barrier Coast Network and consisted of mapping the high tide swash line using a global positioning system (GPS) unit in the spring of each year (Psuty et al. 2010). Shoreline change was calculated using the Digital Shoreline Analysis System (DSAS) developed by USGS (Theiler et al. 2008). Key findings from this effort: A mean of 2,255.23 meters (7,399 feet [ft]) of shoreline were mapped from 2020 to 2021 with a mean horizontal precision of 10.73 centimeters (4.2 inches [in]) at Fort Matanzas National Monument from 2020 to 2021. In the annual shoreline change analysis, the mean shoreline distance change from spring 2020 to spring 2021 was -7.40 meters (-24.3 ft) with a standard deviation of 20.24 meters (66.40 ft). The shoreline change distance ranged from -124.73 to 35.59 meters (-409.1 to 116.7 ft). Two erosion areas and one accretion area were identified in the study area beyond the uncertainty of the data (± 10 meters [32.8 ft]). The annual shoreline change from 2020 to 2021 showed erosion on the east and west sides of A1A where the Matanzas Inlet is located. Overall, the most dynamic area of shoreline change within Fort Matanzas National Monument appeared to be on the east and west side of A1A, along the Matanzas River inlet.

2006 ◽  
Vol 36 (3) ◽  
pp. 519-528 ◽  
Robert F Powers

The capacity of a forest site to capture carbon and convert it into biomass defines fundamental site productivity. In the United States, the National Forest Management Act (NFMA) of 1976 mandates that this capacity must be protected on federally managed lands. Responding to NFMA, the USDA Forest Service began a soil-based monitoring program for its managed forests. Lacking an extensive research base, soil-based standards were predicated largely on professional judgment. To provide a stronger foundation, a national program of Long-Term Soil Productivity (LTSP) research was established. The LTSP program addresses both short- and long-term consequences of site and soil disturbance on fundamental forest productivity. Research centers on two key properties affecting a site's long-term productive capacity, site organic matter and soil porosity, each of which is readily influenced by management. A coordinated research network of more than 100 field installations in the United States and Canada is examining how pulse changes in these properties affect soil processes supporting vegetative growth and potential productivity. Results from installations with ≥5 years of response were presented on the 10th anniversary of LTSP, and the latest findings are assembled here. This paper describes the evolution of the study and the characteristics of the oldest field installations.

2022 ◽  
Maxwell Boyle ◽  
Elizabeth Rico

The Southeast Coast Network (SECN) conducts long-term terrestrial vegetation monitoring as part of the nationwide Inventory and Monitoring Program of the National Park Service (NPS). The vegetation community vital sign is one of the primary-tier resources identified by SECN park managers, and monitoring is currently conducted at 15 network parks (DeVivo et al. 2008). Monitoring plants and their associated communities over time allows for targeted understanding of ecosystems within the SECN geography, which provides managers information about the degree of change within their parks’ natural vegetation. The first year of conducting this monitoring effort at four SECN parks, including 52 plots on Cape Hatteras National Seashore (CAHA), was 2019. Twelve vegetation plots were established at Cape Hatteras NS in July and August. Data collected in each plot included species richness across multiple spatial scales, species-specific cover and constancy, species-specific woody stem seedling/sapling counts and adult tree (greater than 10 centimeters [3.9 inches {in}]) diameter at breast height (DBH), overall tree health, landform, soil, observed disturbance, and woody biomass (i.e., fuel load) estimates. This report summarizes the baseline (year 1) terrestrial vegetation data collected at Cape Hatteras National Seashore in 2019. Data were stratified across four dominant broadly defined habitats within the park (Maritime Tidal Wetlands, Maritime Nontidal Wetlands, Maritime Open Uplands, and Maritime Upland Forests and Shrublands) and four land parcels (Bodie Island, Buxton, Hatteras Island, and Ocracoke Island). Noteworthy findings include: A total of 265 vascular plant taxa (species or lower) were observed across 52 vegetation plots, including 13 species not previously documented within the park. The most frequently encountered species in each broadly defined habitat included: Maritime Tidal Wetlands: saltmeadow cordgrass Spartina patens), swallow-wort (Pattalias palustre), and marsh fimbry (Fimbristylis castanea) Maritime Nontidal Wetlands: common wax-myrtle (Morella cerifera), saltmeadow cordgrass, eastern poison ivy (Toxicodendron radicans var. radicans), and saw greenbriar (Smilax bona-nox) Maritime Open Uplands: sea oats (Uniola paniculata), dune camphorweed (Heterotheca subaxillaris), and seabeach evening-primrose (Oenothera humifusa) Maritime Upland Forests and Shrublands: : loblolly pine (Pinus taeda), southern/eastern red cedar (Juniperus silicicola + virginiana), common wax-myrtle, and live oak (Quercus virginiana). Five invasive species identified as either a Severe Threat (Rank 1) or Significant Threat (Rank 2) to native plants by the North Carolina Native Plant Society (Buchanan 2010) were found during this monitoring effort. These species (and their overall frequency of occurrence within all plots) included: alligatorweed (Alternanthera philoxeroides; 2%), Japanese honeysuckle (Lonicera japonica; 10%), Japanese stilt-grass (Microstegium vimineum; 2%), European common reed (Phragmites australis; 8%), and common chickweed (Stellaria media; 2%). Eighteen rare species tracked by the North Carolina Natural Heritage Program (Robinson 2018) were found during this monitoring effort, including two species—cypress panicgrass (Dichanthelium caerulescens) and Gulf Coast spikerush (Eleocharis cellulosa)—listed as State Endangered by the Plant Conservation Program of the North Carolina Department of Agriculture and Consumer Services (NCPCP 2010). Southern/eastern red cedar was a dominant species within the tree stratum of both Maritime Nontidal Wetland and Maritime Upland Forest and Shrubland habitat types. Other dominant tree species within CAHA forests included loblolly pine, live oak, and Darlington oak (Quercus hemisphaerica). One hundred percent of the live swamp bay (Persea palustris) trees measured in these plots were experiencing declining vigor and observed with symptoms like those caused by laurel wilt......less

Sign in / Sign up

Export Citation Format

Share Document