scholarly journals Indoor air quality in a high school classroom in Rijeka, Croatia (sick classrooms caused by rising CO2 levels)

2021 ◽  
Vol 8 (1-2) ◽  
pp. 1-10
Author(s):  
Tatjana Ivošević ◽  
Patricija Nikolaus ◽  
Tatjana Pranjić-Petrović ◽  
Ivica Orlić

School’s indoor air quality (IAQ) is very important as it can affect student’s learning abilities and lead to health issues. Therefore, indoor air quality, and in particular the CO2 concentration, was monitored on a daily basis from mid-November till the end of December 2017, by using several low-cost instruments. The measuring was performed in the physics classroom of a grammar school in Rijeka, Croatia. Detailed CO2 generation rates, air exchange rates, and ventilation rates are calculated and reported in this work, from the experimentally obtained data. Very high concentrations of over 4.000 ppm were recorded, indicating that ventilation rates are far below 5 Ls-1 per person, which is the lowest recommended value of ventilation rate according to the European standard EN 13779. The experimentally obtained data are compared with the theoretical models and a strong correlation are achieved. This is one of the first comprehensive studies of this kind in Croatia; therefore, we hope that it will stimulate interest between health workers, scientists, and school management to implement indoor air quality monitoring practices and perhaps introduce automated ventilation systems in classrooms for the benefit of students’ health and their learning abilities.

Buildings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 135 ◽  
Author(s):  
Alessandro Franco ◽  
Eva Schito

Air ventilation rate plays a relevant role in maintaining adequate indoor air quality (IAQ) conditions in public buildings. In general, high ventilation rates ensure good indoor air quality but entail relevant energy consumption. Considering the necessity of balancing IAQ and energy consumption, a correlation between the number of occupants obtained from analysis of CO2 concentration variation is presented as a general element for controlling the operation of heating ventilation and air cooling (HVAC) systems. The specific CO2 exhalation rate is estimated using experimental data in some real conditions in university classrooms. A method for the definition of optimal values of air exchange rate is defined, highlighting that the obtained values are much lower than those defined in current technical standards with possibilities of relevant reduction of the total energy consumption.


2021 ◽  
Vol 13 (8) ◽  
pp. 4139
Author(s):  
Muriel Diaz ◽  
Mario Cools ◽  
Maureen Trebilcock ◽  
Beatriz Piderit-Moreno ◽  
Shady Attia

Between the ages of 6 and 18, children spend between 30 and 42 h a week at school, mostly indoors, where indoor environmental quality is usually deficient and does not favor learning. The difficulty of delivering indoor air quality (IAQ) in learning facilities is related to high occupancy rates and low interaction levels with windows. In non-industrialized countries, as in the cases presented, most classrooms have no mechanical ventilation, due to energy poverty and lack of normative requirements. This fact heavily impacts the indoor air quality and students’ learning outcomes. The aim of the paper is to identify the factors that determine acceptable CO2 concentrations. Therefore, it studies air quality in free-running and naturally ventilated primary schools in Chile, aiming to identify the impact of contextual, occupant, and building design factors, using CO2 concentration as a proxy for IAQ. The monitoring of CO2, temperature, and humidity revealed that indoor air CO2 concentration is above 1400 ppm most of the time, with peaks of 5000 ppm during the day, especially in winter. The statistical analysis indicates that CO2 is dependent on climate, seasonality, and indoor temperature, while it is independent of outside temperature in heated classrooms. The odds of having acceptable concentrations of CO2 are bigger when indoor temperatures are high, and there is a need to ventilate for cooling.


Author(s):  
A. Hernández-Gordillo ◽  
S. Ruiz-Correa ◽  
V. Robledo-Valero ◽  
C. Hernández-Rosales ◽  
S. Arriaga

2019 ◽  
Vol 7 (13) ◽  
pp. 2208-2212
Author(s):  
Endang Purnawati Rahayu ◽  
Zulfan Saam ◽  
Sukendi Sukendi ◽  
Dedi Afandi

BACKGROUND: Air quality in inpatient rooms influenced by several factors. Room not qualified health can cause disease and can spread through equipment, the material used, food and drink, health workers, patients and visitors. AIM: The purpose of this study is to know the factors that affect air quality in the inpatient room at a private hospital, Pekanbaru. METHODS: The research is quantitative analytic by design cut latitude study. Samples from 120 nurses were selected overall sampling. The data do with the measurement directly, interviews and observation using a questionnaire. Data analysed by using the chi-square with significance p-value less than 0.05. RESULTS: The quality of the air in inpatient rooms has met the standard. Variables are affecting air quality in inpatient rooms in the hospital significantly with p-value more than 0.05 is temperature, dust, the germ, density occupancy, sanitation room. While the moisture, standard operating procedures and behaviour is not significant. CONCLUSION: The factors that significantly affect indoor air quality inpatient hospitalisation are temperature, dust, germ numbers, occupancy density, room sanitation.


Buildings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 124 ◽  
Author(s):  
Claire Tam ◽  
Yuqing Zhao ◽  
Zaiyi Liao ◽  
Lian Zhao

Indoor air quality and thermal conditions are important considerations when designing indoor spaces to ensure occupant health, satisfaction, and productivity. Carbon dioxide (CO2) concentration and indoor air temperature are two measurable parameters to assess air quality and thermal conditions within a space. Occupants are progressively affected by the indoor environment as the time spent indoors prolongs. Specifically, there is an interest in carrying out investigations on the indoor environment through surveying existing Heating, Ventilation, Air Conditioning (HVAC) system operations in classrooms. Indoor air temperature and CO2 concentration in multiple lecture halls in Toronto, Canada were monitored; observations consistently show high indoor air temperature (overheating) and high CO2 concentration. One classroom is chosen as a representative case study for this paper. The results verify a strong correlation between the number of occupants and the increase in air temperature and CO2 concentration. Building Energy Simulation (BES) is used to investigate the causes of discomfort in the classroom, and to identify methods for regulating the temperature and CO2 concentration. This paper proposes retro-commissioning strategies that could be implemented in institutional buildings; specifically, the increase of outdoor airflow rate and the addition of occupancy-based pre-active HVAC system control. The proposed retrofit cases reduce the measured overheating in the classrooms by 2-3 °C (indoor temperature should be below 23 °C) and maintain CO2 concentration under 900 ppm (the CO2 threshold is 1000 ppm), showing promising improvements to a classroom’s thermal condition and indoor air quality.


2020 ◽  
Vol 727 ◽  
pp. 138385 ◽  
Author(s):  
H. Chojer ◽  
P.T.B.S. Branco ◽  
F.G. Martins ◽  
M.C.M. Alvim-Ferraz ◽  
S.I.V. Sousa

2014 ◽  
Vol 40 (3) ◽  
pp. 259-268 ◽  
Author(s):  
Ana Maria da Conceição Ferreira ◽  
Massano Cardoso

Objective: To determine whether indoor air quality in schools is associated with the prevalence of allergic and respiratory diseases in children. Methods: We evaluated 1,019 students at 51 elementary schools in the city of Coimbra, Portugal. We applied a questionnaire that included questions regarding the demographic, social, and behavioral characteristics of students, as well as the presence of smoking in the family. We also evaluated the indoor air quality in the schools. Results: In the indoor air of the schools evaluated, we identified mean concentrations of carbon dioxide (CO2) above the maximum reference value, especially during the fall and winter. The CO2 concentration was sometimes as high as 1,942 ppm, implying a considerable health risk for the children. The most prevalent symptoms and respiratory diseases identified in the children were sneezing, rales, wheezing, rhinitis, and asthma. Other signs and symptoms, such as poor concentration, cough, headache, and irritation of mucous membranes, were identified. Lack of concentration was associated with CO2 concentrations above the maximum recommended level in indoor air (p = 0.002). There were no other significant associations. Conclusions: Most of the schools evaluated presented with reasonable air quality and thermal comfort. However, the concentrations of various pollutants, especially CO2, suggest the need for corrective interventions, such as reducing air pollutant sources and improving ventilation. There was a statistically significant association between lack of concentration in the children and exposure to high levels of CO2. The overall low level of pollution in the city of Coimbra might explain the lack of other significant associations.


Sign in / Sign up

Export Citation Format

Share Document