scholarly journals Nonlinear anharmonic disturbances of elastic surface Love waves under rigid fixation of the waveguide

Author(s):  
Nadiya Zhogoleva

The model of geometrically and physically nonlinear deformation of anisotropic elastic medium is used in this work. A theoretical numerical-analytic solution of the boundary value problem of determining nonlinear anharmonic disturbances that are generated because of generalised Love wave propagation in a waveguide in the form of a single-crystal layer of the m3m class of a cubic system on the half-space of a single-crystal material of m3m class of a cubic system is constructed. The elastic layer on the top edge is rigidly fixed and on the bottom edge has ideal mechanical contact with the elastic halfspace. Numerical investigations have been carried out for a combination of waveguide materials: a layer of sodium chloride on the silicon half-space. Amplitude-frequency dependences for kinematic characteristics of elastic wave displacements of Love waves and their nonlinear second harmonics are researched and generalized.

2011 ◽  
Vol 117-119 ◽  
pp. 1160-1163 ◽  
Author(s):  
Qian Yang ◽  
Yan Ping Kong ◽  
Jin Xi Liu

This work is concerned with the dispersion characteristics of Love waves propagating in a layered structure consisting of an anisotropic elastic layer and a piezoelectric half-space. The layer processes one symmetric plane, while the half-space is transversely isotropic. The explicit dispersion equation is derived. As an example, an inclined orthotropic material is chosen as an elastic layer to reveal the effect of material anisotropy on the dispersion behaviors. The numerical results show that the phase velocity is strongly influenced by the anisotropic degree.


2020 ◽  
Vol 13 (13) ◽  
Author(s):  
Bishwanath Prasad ◽  
Santimoy Kundu ◽  
Prakash Chandra Pal ◽  
Parvez Alam
Keyword(s):  

2015 ◽  
Vol 40 (2) ◽  
pp. 273-281 ◽  
Author(s):  
Piotr Kiełczyński ◽  
Marek Szalewski ◽  
Andrzej Balcerzak ◽  
Krzysztof Wieja

AbstractThis paper presents a theoretical study of the propagation behaviour of surface Love waves in nonhomogeneous functionally graded elastic materials, which is a vital problem in acoustics. The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the depth (distance from the surface of the material). Two Love wave waveguide structures are analyzed: 1) a nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and 2) a semi-infinite nonhomogeneous elastic half-space. The Direct Sturm-Liouville Problem that describes the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated and solved 1) analytically in the case of the step profile, exponential profile and 1cosh2type profile, and 2) numerically in the case of the power type profiles (i.e. linear and quadratic), by using two numerical methods: i.e. a) Finite Difference Method, and b) Haskell-Thompson Transfer Matrix Method.The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomogeneous elastic graded materials has been established. The results obtained in this paper can give a deeper insight into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials.


Author(s):  
Shichuan Yuan ◽  
Zhenguo Zhang ◽  
Hengxin Ren ◽  
Wei Zhang ◽  
Xianhai Song ◽  
...  

ABSTRACT In this study, the characteristics of Love waves in viscoelastic vertical transversely isotropic layered media are investigated by finite-difference numerical modeling. The accuracy of the modeling scheme is tested against the theoretical seismograms of isotropic-elastic and isotropic-viscoelastic media. The correctness of the modeling results is verified by the theoretical phase-velocity dispersion curves of Love waves in isotropic or anisotropic elastic or viscoelastic media. In two-layer half-space models, the effects of velocity anisotropy, viscoelasticity, and attenuation anisotropy of media on Love waves are studied in detail by comparing the modeling results obtained for anisotropic-elastic, isotropic-viscoelastic, and anisotropic-viscoelastic media with those obtained for isotropic-elastic media. Then, Love waves in three typical four-layer half-space models are simulated to further analyze the characteristics of Love waves in anisotropic-viscoelastic layered media. The results show that Love waves propagating in anisotropic-viscoelastic media are affected by both the anisotropy and viscoelasticity of media. The velocity anisotropy of media causes substantial changes in the values and distribution range of phase velocities of Love waves. The viscoelasticity of media leads to the amplitude attenuation and phase velocity dispersion of Love waves, and these effects increase with decreasing quality factors. The attenuation anisotropy of media indicates that the viscoelasticity degree of media is direction dependent. Comparisons of phase velocity ratios suggest that the change degree of Love-wave phase velocities due to viscoelasticity is much less than that caused by velocity anisotropy.


1999 ◽  
Author(s):  
Galyna M. Vasko ◽  
Perry H. Leo ◽  
Thomas W. Shield

Abstract The austenite to martensite pseudoelastic transformation induced by the anisotropic elastic crack tip stress field in a single crystal of shape memory alloy is considered. It is proposed that the orientation of the initial austenite-martensite interface that forms can be predicted based on knowledge of the stress field, the crystallography of the transformation and one of two selection criteria. These criteria are based on the work of formation of the martensite in stress field and the crack opening displacement the martensite causes at the crack. Predictions of the criteria are compared to experiments on three single edge notched CuAlNi single crystal specimens. Results indicate that the maximum work criterion accurately predicts the orientation of the austenite-martensite interfaces that initially form near a crack.


Author(s):  
G. K. ZAKIR’YANOVA ◽  
◽  
L. A. ALEXEYEVA ◽  

The first boundary value problem of the theory of elasticity for an anisotropic elastic half-space is solved when a transport load moves along its surface. The subsonic Raleigh case is considered, when the velocity of motion is less than the velocity of propagation of bulk and surface elastic waves. The Green’s tensor of the transport boundary value problem is constructed and on its basis the solution of boundary value problems for a wide class of distributed traffic loads is given. To solve the problem, the methods of tensor and linear algebra, integral Fourier transform, and operator method for solving systems of differential equations were used. The obtained solution makes it possible to investigate the dynamics of the rock mass for a wide class of transport loads, in a wide range of velocities, both low velocities and high velocities, and to evaluate the strength properties of the rock mass under the influence of road transport. In particular, determine the permissible velocities of its movement and carrying capacity. In addition, a investigation on its basis of the movement of the day surface along the route will make it possible to establish criteria for the seismic resistance of ground structures and the permissible distances of their location from the route.


1964 ◽  
Vol 54 (2) ◽  
pp. 627-679
Author(s):  
David G. Harkrider

ABSTRACT A matrix formulation is used to derive integral expressions for the time transformed displacement fields produced by simple sources at any depth in a multilayered elastic isotropic solid half-space. The integrals are evaluated for their residue contribution to obtain surface wave displacements in the frequency domain. The solutions are then generalized to include the effect of a surface liquid layer. The theory includes the effect of layering and source depth for the following: (1) Rayleigh waves from an explosive source, (2) Rayleigh waves from a vertical point force, (3) Rayleigh and Love waves from a vertical strike slip fault model. The latter source also includes the effect of fault dimensions and rupture velocity. From these results we are able to show certain reciprocity relations for surface waves which had been previously proved for the total displacement field. The theory presented here lays the ground work for later papers in which theoretical seismograms are compared with observations in both the time and frequency domain.


Sign in / Sign up

Export Citation Format

Share Document