scholarly journals Neuroprotective Effect of Metaplexis japonica against in vitro Ischemia Model

2019 ◽  
Vol 3 (1) ◽  
pp. 51-55 ◽  
Author(s):  
Nirmala Jamarkattel-Pandit ◽  
Hocheol Kim

Metaplexis japonica (Apocynaceae) is a perennial herb, extensively used in traditional medicinal system for various diseases. The purpose of the study was to evaluate the protective effect of M. japonica against in vitro ischemia. In the present study, 70% ethanol extract of M. japonica was fractionated with different polarity solvents. For in vitro ischemia, oxygen-glucose deprivation followed by reoxygenation (OGD-R) in cells was used to investigate the effects of M. japonica and its fractions. For oxidative stress model, Hydrogen peroxide (H2 O2 ) induced cell death was studied in HT22 cell line. M. japonica and its fractions significantly reduced the HT22 cell damage, which was induced by 4 hrs of OGD followed by 24 hrs of reoxygenation and 24 hrs of H2 O2, respectively. The effectiveness of ethyl acetate fraction was higher than other fractions/crude extract. Our results suggest that M. japonica could be a neuroprotective agent for the treatment of stroke. Key words: Metaplexis japonica, Stroke, Oxygen-glucose deprivation, Neuroprotection

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1127 ◽  
Author(s):  
Beatriz Chamorro ◽  
David García-Vieira ◽  
Daniel Diez-Iriepa ◽  
Estíbaliz Garagarza ◽  
Mourad Chioua ◽  
...  

Herein, we report the neuroprotective and antioxidant activity of 1,1′-biphenyl nitrones (BPNs) 1–5 as α-phenyl-N-tert-butylnitrone analogues prepared from commercially available [1,1′-biphenyl]-4-carbaldehyde and [1,1′-biphenyl]-4,4′-dicarbaldehyde. The neuroprotection of BPNs1-5 has been measured against oligomycin A/rotenone and in an oxygen–glucose deprivation in vitro ischemia model in human neuroblastoma SH-SY5Y cells. Our results indicate that BPNs 1–5 have better neuroprotective and antioxidant properties than α-phenyl-N-tert-butylnitrone (PBN), and they are quite similar to N-acetyl-L-cysteine (NAC), which is a well-known antioxidant agent. Among the nitrones studied, homo-bis-nitrone BPHBN5, bearing two N-tert-Bu radicals at the nitrone motif, has the best neuroprotective capacity (EC50 = 13.16 ± 1.65 and 25.5 ± 3.93 μM, against the reduction in metabolic activity induced by respiratory chain blockers and oxygen–glucose deprivation in an in vitro ischemia model, respectively) as well as anti-necrotic, anti-apoptotic, and antioxidant activities (EC50 = 11.2 ± 3.94 μM), which were measured by its capacity to reduce superoxide production in human neuroblastoma SH-SY5Y cell cultures, followed by mononitrone BPMN3, with one N-Bn radical, and BPMN2, with only one N-tert-Bu substituent. The antioxidant activity of BPNs1-5 has also been analyzed for their capacity to scavenge hydroxyl free radicals (82% at 100 μM), lipoxygenase inhibition, and the inhibition of lipid peroxidation (68% at 100 μM). Results showed that although the number of nitrone groups improves the neuroprotection profile of these BPNs, the final effect is also dependent on the substitutent that is being incorporated. Thus, BPNs bearing N-tert-Bu and N-Bn groups show better neuroprotective and antioxidant properties than those substituted with Me. All these results led us to propose homo-bis-nitrone BPHBN5 as the most balanced and interesting nitrone based on its neuroprotective capacity in different neuronal models of oxidative stress and in vitro ischemia as well as its antioxidant activity.


2017 ◽  
Vol 127 (1) ◽  
pp. 98-110 ◽  
Author(s):  
Qian Zhai ◽  
Feng Li ◽  
Xiyao Chen ◽  
Ji Jia ◽  
Sisi Sun ◽  
...  

Abstract Background Microglia can not only detrimentally augment secondary injury but also potentially promote recovery. However, the mechanism underlying the regulation of microglial phenotypes after stroke remains unclear. Methods Mice were subjected to middle cerebral artery occlusion for 60 min. At 3 days after reperfusion, the effects of activation and suppression of triggering receptor expressed on myeloid cells 2 on immunocyte phenotypes (n = 5), neurobehavioral scores (n = 7), infarct volumes (n = 8), and neuronal apoptosis (n = 7) were analyzed. In vitro, cultured microglia were exposed to oxygen–glucose deprivation for 4 h. Inflammatory cytokines, cellular viability (n = 8), neuronal apoptosis (n = 7), and triggering receptor expressed on myeloid cells 2 expression (n = 5) were evaluated in the presence or absence of triggering receptor expressed on myeloid cell-specific small interfering RNA or triggering receptor expressed on myeloid cells 2 overexpression lentivirus. Results Triggering receptor expressed on myeloid cells 2 expression in the ischemic penumbra peaked at 3 days after ischemia–reperfusion injury (4.4 ± 0.1-fold, P = 0.0004) and was enhanced in interleukin-4/interleukin-13–treated microglia in vitro (1.7 ± 0.2-fold, P = 0.0119). After oxygen–glucose deprivation, triggering receptor expressed on myeloid cells 2 conferred neuroprotection by regulating the phenotypic conversion of microglia and inflammatory cytokine release. Intraperitoneal administration of triggering receptor expressed on myeloid cells 2 agonist heat shock protein 60 or unilateral delivery of a recombinant triggering receptor expressed on myeloid cells 2 lentivirus into the cerebral ventricle induced a significant neuroprotective effect in mice (apoptotic neurons decreased to 31.3 ± 7.6%; infarct volume decreased to 44.9 ± 5.3%). All values are presented as the mean ± SD. Conclusions Activation or up-regulation of triggering receptor expressed on myeloid cells 2 promoted the phenotypic conversion of microglia and decreased the number of apoptotic neurons. Our study suggests that triggering receptor expressed on myeloid cells 2 is a novel regulator of microglial phenotypes and may be a potential therapeutic target for stroke.


2017 ◽  
Vol 13 (7) ◽  
pp. P1579-P1580
Author(s):  
Ebenezer Asare ◽  
Rosemarie Roeloffs ◽  
Brante P. Sampey ◽  
Shankar Ramaswamy ◽  
Bote Bruinsma ◽  
...  

2020 ◽  
Vol 21 (23) ◽  
pp. 8921
Author(s):  
Jonas Ort ◽  
Benedikt Kremer ◽  
Linda Grüßer ◽  
Romy Blaumeiser-Debarry ◽  
Hans Clusmann ◽  
...  

Effective pharmacological neuroprotection is one of the most desired aims in modern medicine. We postulated that a combination of two clinically used drugs—nimodipine (L-Type voltage-gated calcium channel blocker) and amiloride (acid-sensing ion channel inhibitor)—might act synergistically in an experimental model of ischaemia, targeting the intracellular rise in calcium as a pathway in neuronal cell death. We used organotypic hippocampal slices of mice pups and a well-established regimen of oxygen-glucose deprivation (OGD) to assess a possible neuroprotective effect. Neither nimodipine (at 10 or 20 µM) alone or in combination with amiloride (at 100 µM) showed any amelioration. Dissolved at 2.0 Vol.% dimethyl-sulfoxide (DMSO), the combination of both components even increased cell damage (p = 0.0001), an effect not observed with amiloride alone. We conclude that neither amiloride nor nimodipine do offer neuroprotection in an in vitro ischaemia model. On a technical note, the use of DMSO should be carefully evaluated in neuroprotective experiments, since it possibly alters cell damage.


PLoS ONE ◽  
2015 ◽  
Vol 10 (4) ◽  
pp. e0123932 ◽  
Author(s):  
Liang Wang ◽  
Yang Zhang ◽  
Tetsuya Asakawa ◽  
Wei Li ◽  
Sha Han ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Qiu-Yan Zhang ◽  
Zhi-Jun Wang ◽  
Lei Miao ◽  
Ying Wang ◽  
Ling-Ling Chang ◽  
...  

Leonurine, also named SCM-198, which was extracted from Herba leonuri, displayed a protective effect on various cardiovascular and brain diseases, like ischemic stroke. Ischemic stroke which is the leading cause of morbidity and mortality, ultimately caused irreversible neuron damage. This study is aimed at exploring the possible therapeutic potential of SCM-198 in the protection against postischemic neuronal injury and possible underlying mechanisms. A transient middle cerebral artery occlusion (tMCAO) rat model was utilized to measure the protective effect of SCM-198 on neurons. TEM was used to determine neuron ultrastructural changes. The brain slices were stained with Nissl staining solution for Nissl bodies. Fluoro-Jade B (FJB) was used for staining the degenerating neurons. In the oxygen-glucose deprivation and re-oxygenation (OGD/R) model of bEnd.3 cells treated with SCM-198 (0.1, 1, 10 μM). Then, the bEnd.3 cells were cocultured with SH-SY5Y cells. Cell viability, MDA level, CAT activity, and apoptosis were examined to evaluate the cytotoxicity of these treatments. Western blot and immunofluorescent assays were used to examine the expression of protein related to the p-STAT3/NOX4/Bcl-2 signaling pathway. Coimmunoprecipitation was performed to determine the interaction between p-STAT3 and NOX4. In the transient middle cerebral artery occlusion (tMCAO) rat model, we found that treatment with SCM-198 could ameliorate neuron morphology and reduce the degenerating cell and neuron loss. In the in vitro model of bEnd.3 cell oxygen-glucose deprivation and reoxygenation (OGD/R), treatment with SCM-198 restored the activity of catalase (CAT), improved the expression of Cu-Zn superoxide dismutase (SOD1), and decreased the malondialdehyde (MDA) production. SCM-198 treatment prevented OGD/R-induced cell apoptosis as indicated by increased cell viability and decreased the number of TUNEL-positive cells, accompanied with upregulation of Bcl-2 and Bcl-xl protein and downregulation Bax protein. The results were consistent with SH-SY5Y cells which coculture with bEnd.3 cells. The forthcoming study revealed that SCM-198 activated the p-STAT3/NOX4/Bcl-2 signaling pathway. All the data indicated that SCM-198 protected against oxidative stress and neuronal damage in in vivo and in vitro injury models via the p-STAT3/NOX4/Bcl-2 signaling pathway. Our results suggested that SCM-198 could be the potential drug for neuroprotective effect through stabilizing endothelial cell function.


2012 ◽  
Vol 82 (4) ◽  
pp. 267-274 ◽  
Author(s):  
Zahide Cavdar ◽  
Mehtap Y. Egrilmez ◽  
Zekiye S. Altun ◽  
Nur Arslan ◽  
Nilgun Yener ◽  
...  

The main pathophysiology in cerebral ischemia is the structural alteration in the neurovascular unit, coinciding with neurovascular matrix degradation. Among the human matrix metalloproteinases (MMPs), MMP-2 and -9, known as gelatinases, are the key enzymes for degrading type IV collagen, which is the major component of the basal membrane that surrounds the cerebral blood vessel. In the present study, we investigated the effects of resveratrol on cytotoxicity, reactive oxygen species (ROS), and gelatinases (MMP-2 and -9) in human cerebral microvascular endothelial cells exposed to 6 hours of oxygen-glucose deprivation and a subsequent 24 hours of reoxygenation with glucose (OGD/R), to mimic ischemia/reperfusion in vivo. Lactate dehydrogenase increased significantly, in comparison to that in the normoxia group. ROS was markedly increased in the OGD/R group, compared to normoxia. Correspondingly, ROS was significantly reduced with 50 μM of resveratrol. The proMMP-2 activity in the OGD/R group showed a statistically significant increase from the control cells. Resveratrol preconditioning decreased significantly the proMMP-2 in the cells exposed to OGD/R in comparison to that in the OGD/R group. Our results indicate that resveratrol regulates MMP-2 activity induced by OGD/R via its antioxidant effect, implying a possible mechanism related to the neuroprotective effect of resveratrol.


2021 ◽  
Vol 16 (2) ◽  
pp. 1934578X2199226
Author(s):  
Zhi-You Hao ◽  
Gang Ni ◽  
Dong Liang ◽  
Yan-Fei Liu ◽  
Chun-Lei Zhang ◽  
...  

A new brominated norsesquiterpene glycoside, acoruside (1), has been isolated from the rhizomes of Acorus tatarinowii Schott, together with 8 known compounds (2-9). Their structures were elucidated mainly based on 1-dimensional (1D) and 2D nuclear magnetic resonance spectra. The absolute configuration of compound 1 was determined by comparing its experimental and calculated electronic circular dichroism spectra. The in vitro tests indicated that at 10 µM, compounds 2, 3, and 4 aggravated serum deprivation injuries of PC12 cells, compound 2 aggravated rotenone-induced injuries of PC12 cells, and compounds 3 and 4 aggravated the oxygen-glucose deprivation-induced injuries of PC12 cells.


Sign in / Sign up

Export Citation Format

Share Document