scholarly journals Keys for Identification of Gramineous Perennial Weed Species Based on Leaf Morphology and Frequency of Infestation of paddy fields in Yachiyo, Chiba Prefecture.

1998 ◽  
Vol 43 (4) ◽  
pp. 364-367
Author(s):  
Hirohiko Morita ◽  
Do-Jin Lee ◽  
Akira Koarai
Botany ◽  
2015 ◽  
Vol 93 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Scott N. White ◽  
Nathan S. Boyd ◽  
Rene C. Van Acker ◽  
Clarence J. Swanton

Red sorrel (Rumex acetosella L.) is a ramet-producing herbaceous creeping perennial species commonly found as a weed in commercially managed lowbush blueberry (Vaccinium angustifolium Aiton) fields in Nova Scotia, Canada. Flowering and seed production occur primarily in overwintering ramets of this species, indicating a potential vernalization requirement for flowering. This study was therefore initiated to examine the role of vernalization, photoperiod, and pre-vernalization stimulus on ramet flowering. Red sorrel ramets propagated from creeping roots and seeds collected from established red sorrel populations in lowbush blueberry had an obligate requirement for vernalization to flower. Ramet populations maintained under pre- and post-vernalization photoperiods of 16 h flowered following 12 weeks of vernalization at 4 ± 0.1 °C, whereas those maintained under constant 16, 14, or 8 h photoperiods without vernalization did not flower. Vernalization for 10 weeks maximized, but did not saturate, the flowering response. Pre-vernalization photoperiod affected flowering response, with increased flowering frequency observed in ramet populations exposed to decreasing, rather than constant, photoperiod prior to vernalization. This study represents the first attempt to determine the combined effects of vernalization and photoperiod on red sorrel flowering, and the results provide a benchmark for the future study of flowering and sexual reproduction in this economically important perennial weed species.


Weed Science ◽  
1999 ◽  
Vol 47 (6) ◽  
pp. 636-643 ◽  
Author(s):  
Wendy A. Pline ◽  
Jingrui Wu ◽  
Kriton K. Hatzios

Absorption, translocation, and metabolism of14C-glufosinate were studied in three annual and two perennial weed species. Young seedlings ofSetaria faberi, Chenopodium album, Cassia obtusifolia, Solanum carolinense, andAsclepias syriacawere treated with foliar-applied14C-glufosinate, and plant tissues were harvested 12, 48, and 72 h after treatment (HAT). Absorption of14C-glufosinate was initially rapid, but increased only slightly after 12 h in all species. Glufosinate absorption was highest inS. carolinense(73% of applied radioactivity), followed byS. faberi(54%),C. obtusifolia(44%),C. album(41%), andA. syriaca(37%) 72 HAT. Translocation of radioactivity out of the treated leaf was species dependent and did not increase much with time in all weed species.S. carolinenseandS. faberitranslocated the highest amounts of absorbed radioactivity out of the treated leaf with 49 to 59% moving to the upper foliage.S. faberitranslocated the highest amount of absorbed radioactivity to the roots (12 to 14%), whileC. albumtranslocated the least (2 to 3%). TLC analysis of plant extracts showed that14C-glufosinate was not metabolized inS. faberi, C. obtusifolia, S. carolinense, andA. syriaca. A glufosinate metabolite with an Rf value matching that of methyl-phosphinico propionate was detected inC. album. Treatment with ammonium sulfate (AMS) increased glufosinate absorption inS. faberiandC. obtusifolia12 HAT, but decreased absorption inC. album. Treatment with pelargonic acid (PA) did not affect glufosinate absorption in any of the species tested. Treatment with AMS and PA did not affect glufosinate translocation in any of the five weed species. Treatment with AMS and PA did not influence the metabolism of glufosinate in any of the five weed species studied. These results show that differential absorption and translocation seem to explain the greater sensitivity of the annual and perennial weeds to glufosinate. Treatment with ammonium sulfate may increase the efficacy of glufosinate in perennial weeds.


2019 ◽  
Vol 34 (3) ◽  
pp. 408-415
Author(s):  
Gatlin Bunton ◽  
Zachary Trower ◽  
Kevin W. Bradley

AbstractDuring the 2015, 2016, and 2017 growing seasons, a survey of 63 pastures in Missouri was conducted to determine the effects of selected soil and forage parameters on the density of common annual, biennial, and perennial weed species. Permanent sampling areas were established in each pasture at a frequency of one representative 20-m2 area per 4 ha of pasture, and weed species and density in each area were determined at 14-d intervals for a period from mid-April until late September. The parameters evaluated included soil pH, phosphorus (P), potassium (K), magnesium (Mg), calcium (Ca), sulfur (S), zinc (Zn), manganese (Mn), and copper (Cu) concentrations, as well as tall fescue density, forage groundcover density, and stocking rate. An increase of 1 unit in soil pH was associated with 146 fewer weeds per hectare, the largest reduction in weed density in response to any soil parameter. Increased soil pH was associated with the greatest reduction in perennial grass weed density, along with an average reduction of 1,410 brush weeds per hectare for each 1-unit increase in soil pH. Common ragweed, a widespread weed of pastures, could be reduced by 3,056 weeds ha−1 when soil pH was 1 unit greater. A 1-ppm increase in soil P was correlated with a decrease of 206 biennial broadleaf weeds per hectare. Perennial broadleaf weed density was reduced in soils with greater concentrations of P, K, and Ca. Additionally, for every 1% increase of tall fescue and forage groundcover, there was a decrease of 18 and 38 perennial broadleaf weeds per hectare. The results from this research indicate that the density of many common weed species can be reduced with higher soil pH and adjustments to soil macro- and micronutrient concentrations, especially P.


2016 ◽  
Vol 9 (2) ◽  
pp. 148-158 ◽  
Author(s):  
Timothy W. Miller

Multiple weed control strategies employed in combination can often aid the successful management of perennial weed species. This review article provides examples of integrated control programs that could aid in the management of several invasive perennial weed species that are problematic in the Pacific Northwest and elsewhere in North America. The development of an integrated management control program for wild chervil, a relatively recent invader to the Pacific Northwest of the United States and adjacent Canada, provides an example for this process. Through use of mechanical (mowing and tillage), cultural (establishment of competitive vegetation), and chemical (specific herbicides) strategies, control of this short-lived perennial species was greatly improved as compared to foliar herbicide applications alone. Such integrated strategies have been shown to enhance control of many perennial weed species, while potentially reducing the amount of herbicide applied, lessening the possibility of injury to adjacent desirable vegetation and increasing the stability of the ecological community at the site.


HortScience ◽  
1994 ◽  
Vol 29 (5) ◽  
pp. 547e-547
Author(s):  
Clyde L. Elmore ◽  
Scott Steinmaus ◽  
Dean Donaldson

Cover crops are grown in vineyards for many reasons, including erosion control, maintaining organic matter and changing pest complexes. Changing a management practice from using resident vegetation as a cover to other planted cover crops will change the vineyard floor flora. The cover crops of `Olge' oat, `Olge' oat and purple vetch, and purple vetch alone were compared to resident vegetation as winter planted cover crops. The cover was harvested in April of each year and blown under the vine row; The cover crop remains were disked into the middles after mulching. Three varieties of subterranean clover were planted in the vine rows at each location in one-half of each of the cover crops. The winter annual weed species, black and wild mustard, common chickweed and annual bluegrass decreased in the inter-row areas. The perennial weed field bindweed increased in all cover crop treatments.


2003 ◽  
Vol 48 (Supplement) ◽  
pp. 248-249
Author(s):  
Yukihide KANDA ◽  
Yasuhiko ASANO
Keyword(s):  

2008 ◽  
Vol 42 (1) ◽  
pp. 57-62 ◽  
Author(s):  
Noriyuki KOIZUMI ◽  
Takeshi TAKEMURA ◽  
Shuji OKUSHIMA ◽  
Atsushi MORI ◽  
Shu EBIHARA

Sign in / Sign up

Export Citation Format

Share Document