scholarly journals Concentrations of carbon monoxide and nitrogen oxides from a 15 kW heating boiler supplied periodically with a mixture of sunflower husk and wood pellets

2014 ◽  
Vol 40 (2) ◽  
Author(s):  
Marek Juszczak
2012 ◽  
Vol 33 (2) ◽  
pp. 231-242 ◽  
Author(s):  
Marek Juszczak ◽  
Katarzyna Lossy

Pollutant emission from a heat station supplied with agriculture biomass and wood pellet mixtureTests for combustion of hay and sunflower husk pellets mixed with wood pellets were performed in a horizontal-feed as well as under-feed (retort) wood pellet furnace installed in boilers with a nominal heat output of 15 and 20 kW, located in a heat station. During the combustion a slagging phenomenon was observed in the furnaces. In order to lower the temperature in the furnace, fuel feeding rate was reduced with unaltered air stream rate. The higher the proportion of wood pellets in the mixture the lower carbon monoxide concentration. The following results of carbon monoxide concentration (in mg/m3presented for 10% O2content in flue gas) for different furnaces and fuel mixtures (proportion in wt%) were obtained: horizontal-feed furnace supplied with hay/wood: 0/100 - 326; 30/70 - 157; 50/50 - 301; 100/0 - 3300; horizontal-feed furnace supplied with sunflower husk/wood: 50/50 - 1062; 67/33 - 1721; 100/0 - 3775; under-feed (retort) furnace supplied with hay/wood: 0/100 - 90; 15/85 - 157; 30/70 - 135; 50/50 - 5179; under-feed furnace supplied with sunflower husk/wood: 67/33 - 2498; 100/0 - 3128. Boiler heat output and heat efficiency was low: 7 to 13 kW and about 55%, respectively, for the boiler with horizontal-feed furnace and 9 to 14 kW and 64%, respectively, for the boiler with under-feed furnace.


2021 ◽  
pp. 28-32
Author(s):  
VALERIY L. CHUMAKOV ◽  

The paper shows some ways to improve the environmental characteristics of a diesel engine using gaseous hydrocarbon fuel and operating the engine in a gas-diesel cycle mode. Some possibilities to reduce toxic components of exhaust gases in a gas-diesel engine operating on liquefi ed propane-butane mixtures have been studied. Experiments carried out in a wide range of load from 10 to 100% and speed from 1400 to 2000 rpm showed that the gas-diesel engine provides a suffi ciently high level of diesel fuel replacement with gas hydrocarbon fuel. The authors indicate some eff ective ways to reduce the toxicity of exhaust gases. The engine power should be adjusted by the simultaneous supply of fuel, gas and throttling the air charge in the intake manifold. This method enriches the fi rst combusting portions to reduce nitrogen oxides and maintains the depletion of the main charge within the fl ammability limits of the gas-air charge to reduce carbon monoxide and hydrocarbons. The authors found that when the engine operates in a gas-diesel cycle mode, the power change provides a decrease in nitrogen oxide emissions of gas-diesel fuel only due to gas supply in almost the entire load range as compared to the pure diesel. At high loads (more than 80%) stable engine operation is ensured up to 90% of diesel fuel replaced by gas. Even at 10% of diesel fuel used the concentration of nitrogen oxides decreases by at least 15…20% as compared with a diesel engine in the entire load range. However, there is an increased emission of hydrocarbons and carbon monoxide in the exhaust gases. Further experimental studies have shown that optimization of the gas diesel regulation can reduce the mass emission of nitrogen oxides contained in exhaust gases in 2…3 times and greatly reduce the emission of incomplete combustion products – carbon monoxide and hydrocarbons.


2018 ◽  
Vol 44 ◽  
pp. 00056 ◽  
Author(s):  
Sylwia Janta-Lipińska ◽  
Alexander Shkarovskiy

Nitrogen oxides are considered to be much more toxic than, for example, carbon monoxide. For this reason, the Authors developed and implemented a method for decrease of NOX emission into the atmosphere from DKVR 10-13 boilers. As an effective method for boilers propose injection of steam into the combustion zone. After series of experimental studies an optimal design of the head for steam injection was developed, according to the proprietary technology. The injector head was kept unchanged while the spraying end caps were modified (Fig. 2). Three levels of possible impact of emissions from boiler on the atmosphere pollution were taken into account during studies. After the analysis, it was assumed that the level of the real maximum emission should be taken as the reference level in relation to which the decrease of NOX emission should be determined. The results obtained by the Authors calculated into mass emission and as objective values of nitrogen oxides concentration calculated into α = 1 (Figures 3 and 4). Realization of the study plan, assumed by the Authors, allowed to determine the optimal parameters of the NOx emission decrease method, assuming the expected 30% level of emission decrease at a limited consumption of injected.


2014 ◽  
Vol 60 (No. 2) ◽  
pp. 50-59 ◽  
Author(s):  
J. Malaťák ◽  
J. Bradna

The article assesses the energy use of solid biofuels (wheat and rape straw) and their blends with suitable additives (cocoa husks, brown coal and coal sludge). The elemental and stoichiometric analysis evaluates their suitability for energy recovery. Furthermore, thermal emission characteristics in automatic hot water boiler VERNER A251 are observed. The results of thermal emission measurements show that all samples meet the requirements of the Directive No. 13/2006 for carbon monoxide (2,000 mg/m<sup>3</sup>). The average nitrogen oxides emission concentrations exceed emission limits compared with the Directive No. 13/2006 (250 mg/m<sup>3</sup>) for all samples of solid biofuels. One reason is the high temperature in the combustion chamber that increases combustion temperature and results in high temperature of nitrogen oxides. Another problem is carbon monoxide that depends on the coefficient of excess air. The value of this coefficient drops under its optimum (2.5) and subsequently follows an increasing trend. &nbsp;


2020 ◽  
Vol 314 ◽  
pp. 02006
Author(s):  
I. Orhan

Ordu-Giresun International Airport is Turkey’s first and world’s second airport built on the sea. This study provides the pollutant gas emitted from aircraft with carbon monoxide (CO), hydrocarbons (HC), and nitrogen oxides (NOx) during landing and take-off cycles in Ordu-Giresun International Airport in 2015. It also presents the fuel burnt. For emission calculation, ICAO’s database for aircraft engine emission data and General Directorate of State Airports Authority’s database for flight records were used. In the calculations, a sensitivity analysis was made by taking into consideration the aircraft types and engine types used by the airline companies on the flights to Ordu-Giresun International Airport.


2020 ◽  
Vol 20 (13) ◽  
pp. 7843-7873 ◽  
Author(s):  
Mariano Mertens ◽  
Astrid Kerkweg ◽  
Volker Grewe ◽  
Patrick Jöckel ◽  
Robert Sausen

Abstract. Land transport is an important emission source of nitrogen oxides, carbon monoxide, and volatile organic compounds. The emissions of nitrogen oxides affect air quality directly. Further, all of these emissions serve as a precursor for the formation of tropospheric ozone, thus leading to an indirect influence on air quality. In addition, ozone is radiatively active and its increase leads to a positive radiative forcing. Due to the strong non-linearity of the ozone chemistry, the contribution of emission sources to ozone cannot be calculated or measured directly. Instead, atmospheric chemistry models equipped with specific source attribution methods (e.g. tagging methods) are required. In this study we investigate the contribution of land transport emissions to ozone and ozone precursors using the MECO(n) model system (MESSy-fied ECHAM and COSMO models nested n times). This model system couples a global and a regional chemistry climate model and is equipped with a tagging diagnostic. We investigate the combined effect of long-range-transported ozone and ozone which is produced by European emissions by applying the tagging diagnostic simultaneously and consistently on the global and regional scale. We performed two simulations each covering 3 years with different anthropogenic emission inventories for Europe. We applied two regional refinements, i.e. one refinement covering Europe (50 km resolution) and one covering Germany (12 km resolution). The diagnosed absolute contributions of land transport emissions to reactive nitrogen (NOy) near ground level are in the range of 5 to 10 nmol mol−1. This corresponds to relative contributions of 50 % to 70 %. The largest absolute contributions appear around Paris, southern England, Moscow, the Po Valley, and western Germany. The absolute contributions to carbon monoxide range from 30 nmol mol−1 to more than 75 nmol mol−1 near emission hot-spots such as Paris or Moscow. The ozone which is attributed to land transport emissions shows a strong seasonal cycle with absolute contributions of 3 nmol mol−1 during winter and 5 to 10 nmol mol−1 during summer. This corresponds to relative contributions of 8 % to 10 % during winter and up to 16 % during summer. The largest values during summer are confined to the Po Valley, while the contributions in western Europe range from 12 % to 14 %. Only during summer are the ozone contributions slightly influenced by the anthropogenic emission inventory, but these differences are smaller than the range of the seasonal cycle of the contribution to land transport emissions. This cycle is caused by a complex interplay of seasonal cycles of other emissions (e.g. biogenic) and seasonal variations of the ozone regimes. In addition, our results suggest that during events with large ozone values the ozone contributions of land transport and biogenic emissions increase strongly. Here, the contribution of land transport emissions peaks up to 28 %. Hence, our model results suggest that land transport emissions are an important contributor during periods with large ozone values.


Sign in / Sign up

Export Citation Format

Share Document