Gene Therapy: The New Weapon Against Diseases Until there Difficult to Overcome, Some Current Facts of Gene Therapy and Cases of Sickle Cell Anemia

Author(s):  
Carolle Laure Matene Fongang

Sickle cell anemia is an inherited genetic disease that affects the hemoglobin chains of red blood cell hemoglobin, carrying oxygen-less well through the body. It is a rare disease; however, it is the most widespread genetic disease in the world and especially widespread in sub-Saharan Africa. It causes anemia, painful seizures that affect several organs; it is also called sickle cell anemia, this disease results in a deformation of red blood cells in the form of sickle or a crescent moon, which prevents normal circulation in the blood vessels.

2020 ◽  
Vol 4 (3) ◽  
pp. 01-07
Author(s):  
Carolle Kpoumie

Sickle cell anaemia is an inherited genetic disease that affects the hemoglobin chains of red blood cell hemoglobin, carrying oxygen less well through the body. It is a rare disease, however, it is the most widespread genetic disease in the world and especially widespread in sub-Saharan Africa. It causes anemia, painful seizures that affect several organs, it is also called sickle cell anemia, this disease results in a deformation of red blood cells in the form of sickle or a crescent moon, which prevents normal circulation in the blood vessels. This will cause blood flow to be blocked. It is a disease that is geographically concentrated in certain areas such as Africa, India, Brazil, the Mediterranean Basin, but it is currently found everywhere because of mass migration and has been considered since 2008 by United Nations as a public health priority. Sickle cell disease affects black people and accounts for 50% of deaths in childhood.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 993-993
Author(s):  
Leon Tshilolo ◽  
George A. Tomlinson ◽  
Patrick T. McGann ◽  
Teresa S. Latham ◽  
Peter Olupot-Olupot ◽  
...  

Introduction. Children with sickle cell anemia enrolled in Realizing Effectiveness Across Continents with Hydroxyurea (REACH, NCT01966731) received open-label hydroxyurea at maximum tolerated dose (MTD) in four countries within sub-Saharan Africa (Tshilolo et al, NEJM 2019;380:121-131). Unlike children in the United States or Europe, a substantial proportion of REACH participants had splenomegaly at enrollment, and more developed splenomegaly while receiving hydroxyurea. Splenic enlargement in association with hydroxyurea treatment in sub-Saharan Africa is previously unrecognized, and its causes and consequences remain unclear. Methods. Palpable splenomegaly was evaluated at both the mid-clavicular and mid-axillary lines at each scheduled and unscheduled sick visit. The size of the spleen, defined as the greatest distance (cm) below the subcostal margin, was recorded in the REDCap trial database at all four clinical sites. Cross-sectional analysis was performed at baseline enrollment using four spleen categories (Not Palpable, 1-4 cm, ≥5 cm, or Splenectomy) with correlations for age, sex, site, growth parameters, alpha-thalassemia trait and G6PD deficiency. This analysis was repeated using the largest spleen size over the first two years on hydroxyurea, but examining two-year laboratory values and also the hydroxyurea dose at MTD, time to MTD, dose-limiting toxicities, and clinical outcomes including acute splenic sequestration, malaria infections, and sepsis. Results. A total of 606 children started hydroxyurea study treatment, including 6 (1.0%) with previous splenectomy, 59 (9.7%) with previous splenic sequestration, and 99 (16.3%) with palpable splenomegaly at enrollment (52 children with 1-4 cm and 47 with ≥5 cm). Large spleens (≥5 cm) were commonly observed at baseline at all clinical sites except Uganda, which identified only 1 child. Compared to those with no palpable spleen, children with large spleens at baseline had similar age and growth parameters, but were significantly more likely to have alpha-thalassemia (78.7% versus 56.2%, P=0.004) and also G6PD deficiency among males (28.0% versus 17.6%, P=0.32). Children with large spleens at enrollment also had a lower hemoglobin (Hb = 6.5 versus 7.3 g/dL, P<0.001) and lower platelet count (platelets = 227 versus 410 x 109/L, P<0.001), but equivalent fetal hemoglobin (HbF = 10.2 versus 9.4%, P=0.82). On hydroxyurea treatment with escalation to MTD, 262 children (43.7%) had palpable splenomegaly recorded, including 120 (20.0%) with spleens ≥5 cm. These large spleens were observed at all four clinical sites, with DRC having the most (52) and Uganda with the least (14). After 24 months of hydroxyurea treatment, laboratory differences were noted according to the cumulative occurrence of splenomegaly including a significantly lower hemoglobin and platelet count, higher absolute reticulocyte count, and lower hydroxyurea dose at MTD (Table). Large spleens were associated with a high cumulative incidence of laboratory dose-limiting toxicities, as well as a significantly higher risk of having clinically symptomatic malaria and receiving blood transfusions (Table). A total of 31 children (5.2%) on hydroxyurea treatment received elective splenectomy, including one partial splenectomy using arterial embolization. Conclusion. Children with sickle cell anemia living in sub-Saharan Africa have an increased risk of having palpable splenomegaly, which is further increased while receiving hydroxyurea treatment. Large spleen at baseline were associated with lower blood counts, consistent with hypersplenism. On hydroxyurea treatment, children with large spleens had significantly lower blood counts and more dose-limiting toxicities, which lowered their eventual hydroxyurea dose at MTD but still led to robust HbF responses. Children with large spleens were also at higher risk of developing malaria infections, receiving transfusions, and requiring surgical splenectomy. Splenic enlargement in association with hydroxyurea treatment was common in children with sickle cell anemia in the REACH trial; its cause remains unclear but the consequences include substantial laboratory toxicity and clinical morbidity. Investigating the etiologies and management of children with chronically enlarged spleens is crucial before expanding hydroxyurea access across Africa for sickle cell anemia. Disclosures Ware: Global Blood Therapeutics: Membership on an entity's Board of Directors or advisory committees; Bristol Myers Squibb: Other: Research Drug Donation; Nova Laboratories: Membership on an entity's Board of Directors or advisory committees; CSL Behring: Membership on an entity's Board of Directors or advisory committees; Novartis: Other: DSMB; Agios: Membership on an entity's Board of Directors or advisory committees; Addmedica: Other: Research Drug Donation.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2173-2173
Author(s):  
Arwa Fraiwan ◽  
Muhammad Noman Hasan ◽  
Ran An ◽  
Amy J. Rezac ◽  
Nicholas J. Kocmich ◽  
...  

Nigeria leads the world in the number of cases of sickle cell disease (SCD). An estimated 150,000 babies are born annually in Nigeria with SCD, a heredity disorder, and 70-90% die before age 5. Only a small portion of affected infants and children in sub Saharan Africa (SSA) reach adolescence. Over 650 children die per day in sub-Saharan Africa from SCD. These dismal statistics are in sharp contrast to outcomes in high-income countries (HICs) where more than 90% of SCD patients reach adulthood. The World Health Organization (WHO) estimates that 70% of deaths could be prevented with a low cost diagnostic and treatment plan. Meaningful preventive care and treatment cannot be implemented without a structured plan for early diagnosis and patient tracking.Early diagnosis requires improved access to parents and guardians of children with SCD, and gaining this access remains a challenge in most of SSA. In 2015, Nigeria's Kano state government, with support from foreign partners, established a community-based program for newborn registration. This platform provides unique access to newborn babies in one of Nigeria's most populous cities, but still lacks a functioning patient testing, tracking, and monitoring system, which we plan to address in our ongoing study. This study will introduce mobile health in a low-income country with low literacy rate and hopefully accustom that segment of the population to more varied mobile health applications that will ultimately improve their health in the long run. Our current operational platform in Kano, Nigeria provides access to a large population with a high prevalence of SCD. We have previously completed pilot testing of 315 subjects for SCD using our microchip electrophoresis test. We are planning to test up to 4,500 additional subjects less than 5 years of age at Murtala Muhammed Specialist Hospital. The hospital staff includes 97 physicians and 415 nurses and outpatient clinics serve about 30,000 patients monthly. The maternity department has a 200-bed capacity and the antenatal clinic performs about 1,000 deliveries and serves an average of 3,000 mothers monthly. Enrollment is planned to start on September 15, 2019 and medical staff are currently being trained to run the tests. Our study is registered in the United States National Library of Medicine's ClinicalTrials.gov (Identifier: NCT03948516). Our technology is uniquely paired with an automatic reader and an Electronic Medical Record (EMR) and patient management solution to record POC test results, register new cases, and track patients for follow-up (Fig. 1). The reader enables automated interpretation of test results, local and remote test data storage, and includes geolocation (Global Positioning System) (Fig. 2). The system will generate reports for all cases of SCD, track hospital visits, appointments, lab tests, and will have mobile and dashboard applications for tracking patients and samples. The application will be installed on mobile devices provided to users. The proposed system will be compliant with the existing privacy standards to handle medical data (e.g., HIPAA in the US and GDPR in the EU). All communications between the parties will be secured via end-to-end encryption as a safeguard. We anticipate that our project will increase the rates of screening, diagnosis and timely treatment of SCD in Kano State of Nigeria. The project's broader impact will likely be the ability to track and monitor screening, disease detection, diagnosis and treatment, which can be scaled up to the whole nation of Nigeria, then to sub-Saharan Africa. The data obtained and analyzed will be the first of their kind and will be used to inform the design of programs to improve access to, and availability of, effective care for this underserved populations. The importance of increased access to diagnosis and treatment should not be underestimated - it is crucial for realizing effective management of people with SCD. The impact can be enhanced by complementing diagnosis and patient tracking with education for the families so they can provide or seek the necessary preventative treatment. Identification of the location of the patients in need would help identify the areas where family, parent, caregiver education should be provided. Disclosures Fraiwan: Hemex Health, Inc.: Equity Ownership, Patents & Royalties. Hasan:Hemex Health, Inc.: Equity Ownership, Patents & Royalties. An:Hemex Health, Inc.: Patents & Royalties. Thota:Hemex Health, Inc.: Employment. Gurkan:Hemex Health, Inc.: Consultancy, Employment, Equity Ownership, Patents & Royalties, Research Funding.


Blood ◽  
2003 ◽  
Vol 102 (3) ◽  
pp. 834-838 ◽  
Author(s):  
Mohamed Cherif Rahimy ◽  
Annick Gangbo ◽  
Gilbert Ahouignan ◽  
Roselyn Adjou ◽  
Chantal Deguenon ◽  
...  

Abstract Clinical severity of sickle cell anemia (SS) in Africa may not be solely determined by genetic factors. This study evaluated the effects of intensive parental education and adequate clinical care on the course of SS in children in Benin. SS children referred to the National Teaching Hospital in Cotonou were included in the study. Teaching about SS was repeated frequently, emphasizing the importance of keeping clinic appointments, improving the nutrition of the affected children, and instituting antipneumococcal and antimalarial prophylaxis. Frequency and severity of SS-related events, changes in physical growth, frequency of malarial attacks, causes of transfusion, and causes of death were the principal variables assessed. 236 young children with repeated SS-related acute complications were studied from July 1, 1993, to December 31, 1999 (983 patient-years). A marked reduction in the frequency and severity of SS-related acute events was observed. Improvement in general status and physical growth was noted in 184 patients (78%); in addition, 22 of the remaining 52 patients showed similar improvement after remotivating the parents for compliance. There were 10 deaths, primarily in this cohort of 52 patients. Intensive sociomedical intervention can produce sustained clinical improvement in many severely ill SS children in sub-Saharan Africa.


Blood ◽  
1991 ◽  
Vol 78 (1) ◽  
pp. 217-225 ◽  
Author(s):  
ME Fabry ◽  
JR Romero ◽  
ID Buchanan ◽  
SM Suzuka ◽  
G Stamatoyannopoulos ◽  
...  

We have previously demonstrated that young normal (AA) and sickle cell anemia (SS) red blood cells are capable of a volume regulatory decrease response (VRD) driven by a K:Cl cotransporter that is activated by low pH or hypotonic conditions. We now report on the characteristics of young SS cells (SS2, discocytes) capable of rapid increase in density in response to swelling. We have isolated cells with high VRD response (H-VRD) and low VRD response (L-VRD) cells by incubation and density- gradient centrifugation under hypotonic conditions. Comparison of these cells in patients homozygous for hemoglobin (Hb)S indicated that H-VRD cells have 91% more reticulocytes (P less than 9 x 10(-9) than L-VRD cells, 25% less HbF (P less than 5.5 x 10(-5), 106% more NEM (N- methylmaleimide)-stimulated K:Cl cotransport activity (P less than 2 x 10(-4), and 86% more volume-stimulated K:Cl cotransport activity (P less than 1.8 x 10(-3). H-VRD and L-VRD cells have similar G-6-PD and Na+/H+ antiport activity. In agreement with the reduced percent HbF in H-VRD cells, F cells (red blood cells that contain fetal Hb) are depleted from the H-VRD population; however, F reticulocytes are enriched in the H-VRD population to the same extent as non-F reticulocytes, which suggests that both F and non-F reticulocytes have a similar initial distribution of volume-sensitive K:Cl cotransport activity but that it may be more rapidly inactivated in F than in S reticulocytes. We find that H-VRD cells consist of 20% reticulocytes (or 79% of all reticulocytes in SS2) and 80% more mature cells. This study demonstrates the role of K:Cl cotransport in determining red blood cell density, the heterogeneity of K:Cl cotransport activity in reticulocytes, and the capacity for rapid change in the density of reticulocytes with high K:Cl cotransport activity. We speculate that the H-VRD population may be more susceptible to generation of dense and irreversibly sickled cells.


Author(s):  
S. Y. Lema ◽  
J. Suleiman ◽  
J. Ibrahim

Sickle Cell Anaemia is still considered the most common genetic disease worldwide, causing morbidity and mortality in Sub-Saharan Africa, Mediterranean areas, Middle East and India. Nigeria, being the most populous black nation in the world, bears its greatest burden in Sub-Saharan Africa. This study was conducted to determine the incidence of Sickle Cell Anaemia among children attending Maryam Abacha Women and Children Hospital, Sokoto. A total of one hundred (100) blood samples were examined for the disease. Out of the 100 children tested for the disease. (59%) were normal (HbAA), (35%) were carrier (HbAS) and (6%) were Sicklers (HbSS). The result based on gender showed that female has the highest percentage of the disease (5%) against male subjects with only (1%). A child between the age group 6-10 years has the highest rate of sickle cell anaemia (3%) while age group 11-15 years had the lowest rate of the infection. Improved knowledge regarding Sickle cell anaemia disease and its comprehensive care among Nigerian physicians will enhance quality of care for affected childrens and policy for regular genotype test by government and other stakeholders before marriage among Nigerians will help to prevent the disease.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 20-21
Author(s):  
Emmanuela E. Ambrose ◽  
Luke R. Smart ◽  
Primrose Songoro ◽  
Idd Shabani ◽  
Protas Komba ◽  
...  

Introduction: Sickle cell anemia (SCA) is highly prevalent in sub-Saharan Africa with >300,000 annual births, and substantial morbidity and mortality due to limited resources. The burden of stroke in this population is of particular concern, given the devastating clinical and neurocognitive sequelae of these events. Hydroxyurea, a potent disease modifying therapy for SCA, is safe and feasible for low-resource and malarial endemic countries within sub-Saharan Africa and when used at maximum tolerated dose (MTD), decreases the incidence of acute painful vaso-occlusive events, infections, malaria, transfusions, hospitalizations, and death. Whether hydroxyurea can prevent primary stroke in SCA within Africa has not yet been determined, due in part to lack of stroke screening programs using transcranial Doppler (TCD) ultrasonography. If effective, hydroxyurea would have even more therapeutic benefits for children with SCA, particularly in settings where blood is not available, affordable, or safe. We designed the Stroke Prevention with Hydroxyurea Enabled through Research and Education (SPHERE) trial to determine the stroke risk among Tanzanian children using TCD screening and to investigate the effects of hydroxyurea to reduce that risk. Methods: The SPHERE trial (NCT03948867) is a single center prospective phase 2 open-label screening and treatment pilot study at Bugando Medical Centre, a teaching and referral hospital in Mwanza, Tanzania. Children 2-16 years old with SCA consented to TCD screening by locally trained and certified examiners; recent febrile illness, red cell transfusion, or hospitalization were temporary exclusions. Study participants with maximum Time-Averaged Mean Velocity (TAMV) on TCD exam categorized as conditional (170-199 cm/sec) or abnormal (≥200 cm/sec) are offered hydroxyurea with escalation to MTD, while those with normal TCD screening exams will be rescreened annually. Hydroxyurea is initiated at ~20 mg/kg/day using 500 mg capsules and a weekly dosing calculator, then escalated every 8 weeks by 5 mg/kg/day up to 35 mg/kg/day. Children on hydroxyurea are seen monthly during dose escalation and every 3 months after reaching MTD. The primary endpoint is change in TCD velocity after 12 months of hydroxyurea therapy. Secondary endpoints include changes in splenic volume and filtrative function; change in renal function; incidence of infection, especially malaria; hydroxyurea pharmacokinetics; and genetic modifiers of disease including pharmacogenomics. Results: From April 2019 to April 2020, a total of 202 children underwent TCD screening, exceeding the projected enrollment pace and goal (Figure). The average age (mean ± SD) at enrollment was 6.8 ± 3.5 years, and 53% were female. A majority had previous dactylitis (75%), painful vaso-occlusive episode (93%), blood transfusion (68%), and malaria (89%). Recurrent hospitalization was common with 30% having >5 previous hospitalizations. Only 4% had previously used hydroxyurea. Baseline labs included hemoglobin = 7.8 ± 1.3 g/dL, HbF = 9.3 ± 5.4 %, and ANC = 5.5 ± 2.4 x 109/L. Baseline assessment revealed a palpable spleen in 46 children (23%), and most of these (29) were ≥5 cm below the costal margin. Abdominal ultrasonography documented splenic tissue in 91% of children with an average volume of 101 ± 123 mL (range 8-1045). TCD examinations were performed in all children at enrollment with average TAMV of 148 ± 27 cm/sec [median 144, IQR 130-169 cm/sec] with 76% normal, 21% conditional, 2% abnormal, and 1% inadequate exams. Of 47 children eligible for hydroxyurea for elevated TCD velocities, 45 successfully initiated treatment, while 1 lived too far away for regular visits, and 1 had low blood counts from acute splenic sequestration and died before initiating study treatment. Conclusion: Children with SCA in Tanzania have a high risk for primary stroke. Identification of elevated TCD velocities through screening by local trained certified examiners, coupled with initiation of hydroxyurea treatment with dose escalation to MTD, offers a feasible and affordable means by which to lower TCD velocities and reduce primary stroke risk. Now fully enrolled, SPHERE has built local clinical capacity, research infrastructure and high-quality TCD screening, and will prospectively determine the benefits of hydroxyurea for stroke prevention, as a prelude for expanding hydroxyurea access for children with SCA in Tanzania. Figure Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document