scholarly journals Numerical simulation of the magnetic field induced by the oscillatory motion of a charged ball

2020 ◽  
pp. 169-175
Author(s):  
С.Ю. Маламанов ◽  
В.А. Павловский

Современные вычислительные средства с помощью новейших компьютерных технологий дают возможность производить моделирование и расчёт научных и прикладных задач в самых разных сферах деятельности. Новые возможности, позволяют ставить и решать многие комплексные научные и технические задачи морской гео- и гидрофизики, среди которых особенно актуальны в настоящее время следующие: создание аппаратуры для изучения и измерения электрического и магнитного полей в воде; исследование электрических явлений в море для определения их связи с другими физическими процессами; изучение магнитогидродинамических процессов, возникающих из-за движения морской воды в магнитном поле Земли и многие другие Некоторые прикладные задачи требуют физически верного описания движения твёрдого тела, как в жидкой среде, так и на границе раздела сред, например, «газ–жидкость». Кроме того, подобного рода движения могут происходить при наличии изменчивости физических (например, электромагнитного) полей, которые необходимо учитывать. Решение подобных задач стало возможным с помощью современных вычислительных комплексов. Однако при этом следует иметь в виду, что сложный характер взаимодействия гидродинамического и электромагнитного полей обуславливает необходимость рассмотрения достаточно упрощенных моделей, описывающих основные закономерности изучаемых явлений. В настоящей работе представлены результаты численного моделирования генерации индуцированного магнитного поля, вызванной колебательным движением твёрдого шара, с помощь вычислительного комплекса ANSYS.CFX. Шар совершает вынужденные колебания на границе раздела «морская вода – воздух». Модельная постановка задачи позволяет лучше понять механизм генерации магнитного поля, обусловленный движением твёрдого заряженного тела в проводящей среде. Рассматриваемое твердое тело – шар - моделируется набором 2D областей, формирующими его поверхность, при этом сетка движется по его поверхности в соответствии с решением уравнений динамики последнего. Решение уравнений прямолинейного движения выполняется с помощью дискретизации по неявной схеме интегрирования Ньюмарка. При этом используется 2й порядок точности. Для расчета параметров магнитного поля решалась система уравнениймагнитной гидродинамики, реализованная в вычислительной структуре комплекса ANSYS. CFX. Modern computing facilities with the help of the latest computer technologies allow modeling and calculating scientific and applied problems in various fields of activity. New modeling capabilities make it possible to pose and solve many complex scientific and technical problems of marine geo- and hydrophysics, among which the following are especially relevant now: creation of equipment for studying and measuring electric and magnetic fields in water; study of electrical phenomena at sea to determine their relationship with other physical processes; study of magnetohydrodynamic processes arising from the movement of sea water in the Earth's magnetic field and many others Some applied problems require a physically correct description of the motion of a solid, both in a liquid medium and at the interface between media, for example, "gas-liquid". In addition, this kind of motion can occur in the presence of variability of physical (for example, electromagnetic) fields, which must be taken into account. The solution of such problems has become possible with the help of modern computing systems. However, it should be borne in mind that the complex nature of the interaction of hydrodynamic and electromagnetic fields necessitates the consideration of rather simplified models, which, however, "grasp" the essence and describe the basic laws of the studied phenomena. This paper presents the results of numerical simulation of the generation of an induced magnetic field caused by the oscillatory motion of a solid ball using the ANSYS.CFX computer complex. The ball makes forced vibrations at the "sea water - air" interface. The model formulation of the problem makes it possible to better understand the mechanism of magnetic field generation caused by the motion of a solid charged body in a conducting medium. The considered rigid body - a sphere - is modeled by a set of 2D regions that form its surface, while the mesh moves along its surface in accordance with the solution of the equations of the dynamics of the latter. The solution of the equations of rectilinear motion is performed by discretization according to the implicit Newmark integration scheme. In this case, the 2nd order of accuracy is used. To calculate the parameters of the magnetic field, the system of equations of magnetohydrodynamics was solved, implemented in the computational structure of the ANSYS complex. CFX.

2021 ◽  
pp. 124-128
Author(s):  
С.Ю. Маламанов ◽  
В.А. Павловский

Современные вычислительные средства с помощью новейших компьютерных технологий дают возможность производить моделирование и расчёт научных и прикладных задач в самых разных сферах деятельности. Новые возможности, позволяют ставить и решать многие комплексные научные и технические задачи морской гео- и гидрофизики, среди которых особенно актуальны в настоящее время следующие: создание аппаратуры для изучения и измерения электрического и магнитного полей в воде; исследование электрических явлений в море для определения их связи с другими физическими процессами; изучение магнитогидродинамических процессов, возникающих из-за движения морской воды в магнитном поле Земли и многие другие. Некоторые прикладные задачи требуют физически верного описания движения заряженного твёрдого тела, как в проводящей среде, так и на границе раздела сред, например, «газ–жидкость». Кроме того, подобного рода движения могут происходить при наличии изменчивости физических (например, геомагнитного) полей, которые необходимо учитывать. Решение подобных задач стало возможным с помощью современных вычислительных комплексов. Однако при этом следует иметь в виду, что сложный характер взаимодействия гидродинамического и электромагнитного полей обуславливает необходимость рассмотрения достаточно упрощенных моделей, описывающих основные закономерности изучаемых явлений. В настоящей работе представлены результаты численного моделирования генерации индуцированного магнитного поля, вызванной колебательным движением твёрдого шара, с помощь вычислительного комплекса ANSYS.CFX. Заряженный шар совершает колебания в приповерхностном слое границы раздела «морская вода – воздух». Модельная постановка задачи позволяет лучше понять механизм генерации магнитного поля, обусловленный движением твёрдого заряженного тела в проводящей среде. Modern computing facilities with the help of the latest computer technologies make it possible to simulate and calculate scientific and applied problems in a variety of fields of activity. New opportunities make it possible to pose and solve many complex scientific and technical problems of marine geo- and hydrophysics, among which the following are especially relevant at present: the creation of equipment for the study and measurement of electric and magnetic fields in water; study of electrical phenomena at sea to determine their relationship with other physical processes; the study of magnetohydrodynamic processes arising from the movement of sea water in the Earth's magnetic field and many others. Some applied problems require a physically correct description of the motion of a charged solid, both in a conducting medium and at the interface between media, for example, “gas – liquid”. In addition, such movements can occur in the presence of variability of physical (for example, geomagnetic) fields, which must be taken into account. The solution of such problems has become possible with the help of modern computing systems. However, it should be borne in mind that the complex nature of the interaction of hydrodynamic and electromagnetic fields necessitates the consideration of rather simplified models that describe the basic laws of the studied phenomena. This paper presents the results of numerical simulation of the generation of an induced magnetic field caused by the oscillatory motion of a solid ball using the ANSYS.CFX computer complex. The charged ball vibrates in the near-surface layer of the "sea water - air" interface. The model formulation of the problem makes it possible to better understand the mechanism of magnetic field generation caused by the motion of a solid charged body in a conducting medium.


2021 ◽  
Vol 254 ◽  
pp. 02015
Author(s):  
Olga V. Sheremetyeva ◽  
Anna N. Godomskaya

The low-mode model αΩ-dynamo is used in this paper to simulate the modes of magnetic field generation with insignificant changes in the velocity field of a viscous fluid. In the framework of those model the α-effect intensity is regulated by the process that is included in the magnetohydrodynamic system (MHD-system) as an additive correction as a functional Z(t) depended on the magnetic field energy. Function that determines damped oscillations with variable damping frequency and constant damping coefficient, taken equal to one, is selected as kernel J(t) of functional Z(t). The research of the behavior of the magnetic field is carried out on large time scales, therefore, a rescaled and dimensionless MHD-system with the unit of time iquel the time of the magnetic field dissipation (104 years) for numerical calculations is used. The control parameters of the system are the Reynolds number and the amplitude of the α-effect, that include information about the large-scale and turbulent generators, respectively. Numerical simulation of the magnetic field generation modes was carried out for the values of the damping coefficient b = 1 and frequency a = 0.1, 0.5, 1, 5, 10. According to the results of numerical simulation, an increase in the values of the damping frequency, when the damping coefficient is equal to one, is characterized by a decrease in the inhibitory effect of the process Z(t) on the α-effect and an increase in the region of divergence of the magnetic field on the phase plane of the control parameters. In a comparative analysis with the results of the authors’ work, where the change of the α-effect intensity was determined by the function Z(t) with an exponential kernel and the same value of the damping coefficient, the following differences were noted: an increase in oscillations in both a magnetic and a velocity fields, the appearance of a chaotic regime of magnetic field generation at the value of the damping frequency equal to one, and also insignificant narrowing of the region of α-effect suppression at values of the damping frequency increasing to one.


2021 ◽  
pp. 110-116
Author(s):  
С.Ю. Маламанов ◽  
В.А. Павловский

Современные вычислительные средства с помощью новейших компьютерных технологий дают возможность производить моделирование наукоёмких задач в самых разных сферах деятельности. Новые возможности, позволяют ставить и решать многие комплексные научные и технические задачи морской гидрофизики, среди которых особенно актуальны в настоящее время следующие: создание аппаратуры для изучения и измерения электрического и магнитного полей в воде; исследование электрических явлений в морской среде для определения их связи с другими физическими процессами; изучение магнитогидродинамических процессов, возникающих из-за движения морской воды в геомагнитном поле Земли и многие другие. Определённые задачи требуют физически адекватного описания движения твёрдого тела, как в жидкой среде, так и на границе раздела сред, например, «газ–жидкость». Решение подобных задач стало возможным с помощью современных вычислительных комплексов. При этом следует иметь в виду, что сложный характер взаимодействия гидродинамического и электромагнитного полей обуславливает необходимость рассмотрения достаточно упрощенных моделей, описывающих основные закономерности изучаемых явлений. Предлагаемая статья является продолжением работы [1]. Более подробно рассмотрено индуцируемое электромагнитное поле, вызванное колебаниями заряженного шара в приповерхностном слое жидкости. Подчеркнём, что рассматривается моделирование не только магнитного, но и электрического поля. Помимо этого обсуждаются возможные упрощения, которые используются при численном моделировании индуцированного магнитного поля. Для расчета параметров электромагнитного поля решалась система нестационарных уравнений магнитной гидродинамики, реализованная в вычислительном комплексе ANSYS.CFX. Modern computing facilities with the help of the latest computer technologies make it possible to simulate science-intensive tasks in a variety of fields of activity. New opportunities make it possible to pose and solve many complex scientific and technical problems of marine hydrophysics, among which the following are especially relevant at present: the creation of equipment for the study and measurement of electric and magnetic fields in water; study of electrical phenomena in the marine environment to determine their relationship with other physical processes; the study of magnetohydrodynamic processes arising from the movement of sea water in the geomagnetic field of the Earth and many others. Certain problems require a physically adequate description of the motion of a solid, both in a liquid medium and at the interface between media, for example, "gas-liquid". The solution of such problems has become possible with the help of modern computing systems. It should be borne in mind that the complex nature of the interaction of the hydrodynamic and electromagnetic fields necessitates the consideration of rather simplified models that describe the basic laws of the studied phenomena. This article is a continuation of work [1]. The induced electromagnetic field caused by vibrations of a charged ball in the near-surface layer of a liquid is considered in more detail. We emphasize that we are considering modeling not only the magnetic, but also the electric field. In addition, possible simplifications are discussed that are used in the numerical simulation of the induced magnetic field. To calculate the parameters of the electromagnetic field, a system of non-stationary equations of magnetohydrodynamics was solved, implemented in the ANSYS.CFX computer complex.


2008 ◽  
Vol 4 (S254) ◽  
pp. 95-96
Author(s):  
Arthur M. Wolfe ◽  
Regina A. Jorgenson ◽  
Timothy Robishaw ◽  
Carl Heiles ◽  
Jason X. Prochaska

AbstractThe magnetic field pervading our Galaxy is a crucial constituent of the interstellar medium: it mediates the dynamics of interstellar clouds, the energy density of cosmic rays, and the formation of stars (Beck 2005). The field associated with ionized interstellar gas has been determined through observations of pulsars in our Galaxy. Radio-frequency measurements of pulse dispersion and the rotation of the plane of linear polarization, i.e., Faraday rotation, yield an average value B ≈ 3 μG (Han et al. 2006). The possible detection of Faraday rotation of linearly polarized photons emitted by high-redshift quasars (Kronberg et al. 2008) suggests similar magnetic fields are present in foreground galaxies with redshifts z > 1. As Faraday rotation alone, however, determines neither the magnitude nor the redshift of the magnetic field, the strength of galactic magnetic fields at redshifts z > 0 remains uncertain.Here we report a measurement of a magnetic field of B ≈ 84 μG in a galaxy at z =0.692, using the same Zeeman-splitting technique that revealed an average value of B = 6 μG in the neutral interstellar gas of our Galaxy (Heiles et al. 2004). This is unexpected, as the leading theory of magnetic field generation, the mean-field dynamo model, predicts large-scale magnetic fields to be weaker in the past, rather than stronger (Parker 1970).The full text of this paper was published in Nature (Wolfe et al. 2008).


2002 ◽  
Vol 16 (17n18) ◽  
pp. 2345-2351 ◽  
Author(s):  
A. CEBERS

The phase diagram of the magnetorheological suspension allowing for the modulated phases in the Hele-Shaw cell under the action of the normal field is calculated. The phase boundaries between the stripe, the hexagonal and the unmodulated phases in dependence on the layer thickness and the magnetic field strength are found. The existence of the transitions between the stripe and the hexagonal phases at the corresponding variation of the physical parameters is illustrated by the numerical simulation of the concentration dynamics in the Hele-Shaw cell. It is remarked that those transitions in the case of the magnetorheological suspensions can be caused by the compression or the expansion of the layer. Among the features noticed at the numerical simulation of the concentration dynamics in the Hele-Shaw cell are: the stripe patterns formed from the preexisting hexagonal structures are more ordered than arising from the initial randomly perturbed state; at the slightly perturbed boundary between the concentrated and diluted phases the hexagonal and the inverted hexagonal phases are formed and others.


Author(s):  
Xiaoxia Yuan ◽  
Cangtao Zhou ◽  
Hua Zhang ◽  
Jiayong Zhong ◽  
Bo Han ◽  
...  

Abstract Ultrafast proton radiography has been frequently used for direct measurement of the electromagnetic fields around laser-driven capacitor-coil targets. The goal is to accurately infer the coil currents and their magnetic field generation for a robust magnetic field source that can lead to many applications. The technique often involves numerical calculations for synthetic proton images to reproduce experimental measurements. While electromagnetic fields are the primary source for proton deflections around the capacitor coils, stopping power and small angle deflection can also contribute to the observed experimental features. Here we present a comprehensive study of the proton radiography technique including all sources of proton deflections as a function of coil shapes, current magnitudes, and proton energies. Good agreements were achieved between experimental data and numerical calculations that include both the stopping power and small angle deflections, particularly when the induced coil currents were small.


2010 ◽  
Vol 42 ◽  
pp. 13-16
Author(s):  
Wei Li ◽  
Ping Mei Ming ◽  
Wu Ji Jiang ◽  
Yin Ding Lv

In this paper, the influences of applied magnetic field on flow state during electroforming of the high-aspect-ratio (HAR) blind micro-hole were numerically analyzed using the Fluent software. The results showed that, when microelectroforming of nickel without external agitation, three vortexes could form due to the magnetohydrodynamic (MHD) effect within the HAR micro-hole with magnetic field in parallel to cathode-electrode surface, and the flow rate in the micro-hole increased with the increase of the magnetic field and current density. The MHD effect helped to enhance mass transfer during the microelectroforming of HAR microstructures.


2018 ◽  
Vol 168 ◽  
pp. 02004
Author(s):  
Richard Lenhard ◽  
Milan Malcho ◽  
Katarína Kaduchová

In the paper is shown the connection of two toolboxes in an Ansys Workbench solution for induction heating. In Ansys Workbench, Maxwell electromagnetism programs and Fluent have been linked. In Maxwell, a simulation of electromagnetic induction was performed, where data on the magnetic field distribution in the heated material was obtained and then transformed into the Fluent program in which the induction heating simulation was performed.


Author(s):  
А.Н. Годомская ◽  
О.В. Шереметьева

В динамической модели -динамо с переменной интенсивностью -генератора моделируются инверсии магнитного поля. Изменение интенсивности -генератора как следствие синхронизации высших мод поля скоростей и магнитного поля регулируется функцией Z(t) со степенным ядром. Получены режимы динамо для двух видов радиальной составляющей в скалярной параметризации -эффекта. Проведён анализ результатов в зависимости от изменения показателя степени ядра функции Z(t), а также сравнительный анализ с результатами исследования 10, где использовано показательное ядро функциии Z(t). In the dynamic model -dimensions are simulated reversions of the magnetic field with a varying intensity of the -generator. The change of the -generator intensity as a result of synchronization of higher modes of the velocity field and the magnetic field is regulated by a function Z(t) with a power kernel. Dynamo modes are obtained for two types of radial component in the scalar parameterization of the -effect. The results were analyzed depending on the change in the exponent of the kernel of the function Z(t), also a comparative analysis with the results of the study 10, where the exponential kernel of the function Z(t) was used.


Sign in / Sign up

Export Citation Format

Share Document