scholarly journals Optimization and Characterization of Biocellulose Production from Bacteria Isolated from Passion Fruits

2021 ◽  
Vol 12 (1S) ◽  
pp. 21-30
Author(s):  
Muhammad Haikal Hizani ◽  
Nadiawati Alias ◽  
Syamil Choo Shaiful Bahri ◽  
Khairul Anuar Apendi

Biocellulose is a strong polymer consisting of nanofibrillar structures that produce a large surface area and a microporous structure. This organic polymer is greatly in demand in various industries, such as the paper industry, biomedical industry and cosmetics industry.  In this study, biocellulose production from two bacteria known as endophytic bacterium SV845 (M02) and Pantoea ananatis IADCAMBID (M03) isolated from passion fruit was selected. Three different media formulations (Media 1, Media 2, and Media 3) were used in order to optimize the biocellulose production where each media contained a different percentage of carbon sources (glucose and fructose). The highest biocellulose production (1.544 mg/mL) was demonstrated by M02 bacteria strain in Media 1 containing glucose alone which fermented at 30 ºC while at 37 ºC, the highest biocellulose (BC) production was demonstrated by M03 bacteria strain at 2.078 mg/mL in media containing glucose alone (Media 1). Data on pH changes during biocellulose fermentation in all the media were set at an initial pH of 6. The final pH values were observed in the range of 5.34 to 6.08 for M02 strain and 5.95 to 8.53 for M03 strain, respectively. Characterizations of biocellulose were compared to starch using Fourier Transform Infrared (FTIR) spectroscopy. FTIR analysis indicated that the absorption peaks at 3200 cm-1 and 1630 cm-1 were derived from the association of intermolecular and intramolecular hydrogen bonds and H–O–H bending vibration of the absorbed water molecules in cellulose.

1997 ◽  
Vol 35 (2-3) ◽  
pp. 85-91
Author(s):  
D. A. Barton ◽  
J. D. Woodruff ◽  
T. M. Bousquet ◽  
A. M. Parrish

If promulgated as proposed, effluent guidelines for the U.S. pulp and paper industry will impose average monthly and maximum daily numerical limits of discharged AOX (adsorbable organic halogen). At this time, it is unclear whether the maximum-day variability factor used to establish the proposed effluent guidelines will provide sufficient margin for mills to achieve compliance during periods of normal but variable operating conditions within the pulping and bleaching processes. Consequently, additional information is needed to relate transient AOX loadings with final AOX discharges. This paper presents a simplistic dynamic model of AOX decay during treatment. The model consists of hydraulic characterization of an activated sludge process and a first-order decay coefficient for AOX removal. Data for model development were acquired by frequent collection of influent and effluent samples at a bleach kraft mill during a bleach plant shutdown and startup sequence.


2021 ◽  
Vol 9 (3) ◽  
pp. 533
Author(s):  
Alex Graça Contato ◽  
Tássio Brito de Oliveira ◽  
Guilherme Mauro Aranha ◽  
Emanuelle Neiverth de Freitas ◽  
Ana Claudia Vici ◽  
...  

The lignocellulosic biomass comprises three main components: cellulose, hemicellulose, and lignin. Degradation and conversion of these three components are attractive to biotechnology. This study aimed to prospect fungal lignocellulolytic enzymes with potential industrial applications, produced through a temporal analysis using Hymenaea courbaril and Tamarindus indica seeds as carbon sources. α-L-arabinofuranosidase, acetyl xylan esterase, endo-1,5-α-L-arabinanase, β-D-galactosidase, β-D-glucosidase, β-glucanase, β-D-xylosidase, cellobiohydrolase, endoglucanase, lichenase, mannanase, polygalacturonase, endo-1,4-β-xylanase, and xyloglucanase activities were determined. The enzymes were produced for eight filamentous fungi: Aspergillus fumigatus, Trametes hirsuta, Lasiodiplodia sp., two strains of Trichoderma longibrachiatum, Neocosmospora perseae, Fusarium sp. and Thermothelomyces thermophilus. The best producers concerning enzymatic activity were T. thermophilus and T. longibrachiatum. The optimal conditions for enzyme production were the media supplemented with tamarind seeds, under agitation, for 72 h. This analysis was essential to demonstrate that cultivation conditions, static and under agitation, exert strong influences on the production of several enzymes produced by different fungi. The kind of sugarcane, pretreatment used, microorganisms, and carbon sources proved limiting sugar profile factors.


2012 ◽  
Vol 610-613 ◽  
pp. 3140-3143
Author(s):  
Hui Xing Liang

Dyes are usually difficult to be decolorized due to their complex chemical structures. In this work, a bacterium which had the ability of decoloration on synthetic dyes was isolated from Yancheng printworks and was identified as Pseudomonas aeruginosa. The effects of concentration of the dye concentration, cultural time, cultural temperature and initial pH of cultural medium on the efficiency of decoloration were investigated. The result showed that the optimal cultural conditions was: dye concentration was 50mg.L-1, cultural time was 72 h, cultural temperature was 28°C, initial pH of cultural medium was 7.0.


2011 ◽  
Vol 2011 (15) ◽  
pp. 1661-1672
Author(s):  
Annalisa Onnis-Hayden ◽  
Yunqing Du ◽  
Sylvia Yu ◽  
Samuel Ledwell ◽  
Paul Togna ◽  
...  
Keyword(s):  

2018 ◽  
Vol 78 (4) ◽  
pp. 764-775 ◽  
Author(s):  
Agnieszka Ryznar-Luty ◽  
Edmund Cibis ◽  
Krzysztof Lutosławski

Abstract The aim of the study was to examine how temperature and the pH influence the progress and efficiency of an aerobic biodegradation process, where major organic pollutants are removed from beet molasses vinasse by a mixed culture of Bacillus bacteria. It was conducted in an aerated bioreactor with a stirring system in four experimental series, each composed of five processes run at temperatures of 27, 36, 45, 54 and 63 °C. In the first and second series, medium pH was not controlled, the initial pH amounted to 6.5 and 8.0, respectively. In the third and fourth series, medium pH was controlled at 6.5 and 8.0, respectively. Under optimal conditions, the pollution load of the vinasse stillage expressed as soluble chemical oxygen demand was removed with an 88.73% efficiency. The bacterial culture assimilated all organic pollutants simultaneously, but the rate of assimilation was different. An exception was the process of betaine assimilation, which intensified only when readily available carbon sources were depleted in the medium. Synthesis and assimilation of organic acids were observed in all experiments. Advantages of the proposed method include: possibility of its use at high temperatures, and no necessity for medium pH adjustment during the process.


2021 ◽  
Vol 2 ◽  
Author(s):  
Brandi Kiel Reese ◽  
Morgan S. Sobol ◽  
Marshall Wayne Bowles ◽  
Kai-Uwe Hinrichs

The characterization of metabolically active fungal isolates within the deep marine subsurface will alter current ecosystem models and living biomass estimates that are limited to bacterial and archaeal populations. Although marine fungi have been studied for over fifty years, a detailed description of fungal populations within the deep subsurface is lacking. Fungi possess metabolic pathways capable of utilizing previously considered non-bioavailable energy reserves. Therefore, metabolically active fungi would occupy a unique niche within subsurface ecosystems, with the potential to provide an organic carbon source for heterotrophic prokaryotic populations from the transformation of non-bioavailable energy into substrates, as well as from the fungal necromass itself. These organic carbon sources are not currently being considered in subsurface energy budgets. Sediments from South Pacific Gyre subsurface, one of the most energy-limited environments on Earth, were collected during the Integrated Ocean Drilling Program Expedition 329. Anoxic and oxic sediment slurry enrichments using fresh sediment were used to isolate multiple fungal strains in media types that varied in organic carbon substrates and concentration. Metabolically active and dormant fungal populations were also determined from nucleic acids extracted from in situ cryopreserved South Pacific Gyre sediments. For further characterization of physical growth parameters, two isolates were chosen based on their representation of the whole South Pacific Gyre fungal community. Results from this study show that fungi have adapted to be metabolically active and key community members in South Pacific Gyre sediments and potentially within global biogeochemical cycles.


Sign in / Sign up

Export Citation Format

Share Document