scholarly journals Stability of Stretched Root Systems, Root Posets and Shards

2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Will Dana

Inspired by the infinite families of finite and affine root systems, we define a "stretching" operation on general crystallographic root systems which, on the level of Coxeter diagrams, replaces a vertex with a path of unlabeled edges. We embed a root system into its stretched versions using a similar operation on individual roots. For a fixed root, we describe the long-term behavior of two associated structures as we lengthen the stretched path: the downset in the root poset and Reading's arrangement of shards. We show that both eventually admit a uniform description, and deduce enumerative consequences: the size of the downset is eventually a polynomial, and the number of shards grows exponentially.

2021 ◽  
Vol 31 (3) ◽  
Author(s):  
Pierre-Philippe Dechant

AbstractRecent work has shown that every 3D root system allows the construction of a corresponding 4D root system via an ‘induction theorem’. In this paper, we look at the icosahedral case of $$H_3\rightarrow H_4$$ H 3 → H 4 in detail and perform the calculations explicitly. Clifford algebra is used to perform group theoretic calculations based on the versor theorem and the Cartan–Dieudonné theorem, giving a simple construction of the $${\mathrm {Pin}}$$ Pin and $${\mathrm {Spin}}$$ Spin covers. Using this connection with $$H_3$$ H 3 via the induction theorem sheds light on geometric aspects of the $$H_4$$ H 4 root system (the 600-cell) as well as other related polytopes and their symmetries, such as the famous Grand Antiprism and the snub 24-cell. The uniform construction of root systems from 3D and the uniform procedure of splitting root systems with respect to subrootsystems into separate invariant sets allows further systematic insight into the underlying geometry. All calculations are performed in the even subalgebra of $${\mathrm {Cl}}(3)$$ Cl ( 3 ) , including the construction of the Coxeter plane, which is used for visualising the complementary pairs of invariant polytopes, and are shared as supplementary computational work sheets. This approach therefore constitutes a more systematic and general way of performing calculations concerning groups, in particular reflection groups and root systems, in a Clifford algebraic framework.


2021 ◽  
Vol 1756 ◽  
pp. 147334
Author(s):  
Charles Budaszewski Pinto ◽  
Natividade de Sá Couto-Pereira ◽  
Felipe Kawa Odorcyk ◽  
Kamila Cagliari Zenki ◽  
Carla Dalmaz ◽  
...  

1994 ◽  
Vol 37 (3) ◽  
pp. 338-345 ◽  
Author(s):  
D. Ž. Doković ◽  
P. Check ◽  
J.-Y. Hée

AbstractLet R be a root system (in the sense of Bourbaki) in a finite dimensional real inner product space V. A subset P ⊂ R is closed if α, β ∊ P and α + β ∊ R imply that α + β ∊ P. In this paper we shall classify, up to conjugacy by the Weyl group W of R, all closed sets P ⊂ R such that R\P is also closed. We also show that if θ:R —> R′ is a bijection between two root systems such that both θ and θ-1 preserve closed sets, and if R has at most one irreducible component of type A1, then θ is an isomorphism of root systems.


1975 ◽  
Vol 5 (1) ◽  
pp. 109-121 ◽  
Author(s):  
D. C. F. Fayle

Extension of the root system and stem during the first 30 years of growth of plantation-grown red pine (Pinusresinosa Ait.) on four sites was deduced by root and stem analyses. Maximum rooting depth was reached in the first decade and maximum horizontal extension of roots was virtually complete between years 15 and 20. The main horizontal roots of red pine seldom exceed 11 m in length. Elongation of vertical and horizontal roots was examined in relation to moisture availability and some physical soil conditions. The changing relations within the tree in lineal dimensions and annual elongation of the roots and stem are illustrated. The development of intertree competition above and below ground is considered.


1997 ◽  
Vol 07 (11) ◽  
pp. 2487-2499 ◽  
Author(s):  
Rabbijah Guder ◽  
Edwin Kreuzer

In order to predict the long term behavior of nonlinear dynamical systems the generalized cell mapping is an efficient and powerful method for numerical analysis. For this reason it is of interest to know under what circumstances dynamical quantities of the generalized cell mapping (like persistent groups, stationary densities, …) reflect the dynamics of the system (attractors, invariant measures, …). In this article we develop such connections between the generalized cell mapping theory and the theory of nonlinear dynamical systems. We prove that the generalized cell mapping is a discretization of the Frobenius–Perron operator. By applying the results obtained for the Frobenius–Perron operator to the generalized cell mapping we outline for some classes of transformations that the stationary densities of the generalized cell mapping converges to an invariant measure of the system. Furthermore, we discuss what kind of measures and attractors can be approximated by this method.


2007 ◽  
Vol 133 (9) ◽  
pp. 1307-1315 ◽  
Author(s):  
M. Fragiacomo ◽  
R. M. Gutkowski ◽  
J. Balogh ◽  
R. S. Fast
Keyword(s):  

Author(s):  
Panpan Zhang ◽  
Anhui Gu

This paper is devoted to the long-term behavior of nonautonomous random lattice dynamical systems with nonlinear diffusion terms. The nonlinear drift and diffusion terms are not expected to be Lipschitz continuous but satisfy the continuity and growth conditions. We first prove the existence of solutions, and establish the existence of a multi-valued nonautonomous cocycle. We then show the existence and uniqueness of pullback attractors parameterized by sample parameters. Finally, we establish the measurability of this pullback attractor by the method based on the weak upper semicontinuity of the solutions.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
F. Nyabadza ◽  
B. T. Bekele ◽  
M. A. Rúa ◽  
D. M. Malonza ◽  
N. Chiduku ◽  
...  

Most hosts harbor multiple pathogens at the same time in disease epidemiology. Multiple pathogens have the potential for interaction resulting in negative impacts on host fitness or alterations in pathogen transmission dynamics. In this paper we develop a mathematical model describing the dynamics of HIV-malaria coinfection. Additionally, we extended our model to examine the role treatment (of malaria and HIV) plays in altering populations’ dynamics. Our model consists of 13 interlinked equations which allow us to explore multiple aspects of HIV-malaria transmission and treatment. We perform qualitative analysis of the model that includes positivity and boundedness of solutions. Furthermore, we evaluate the reproductive numbers corresponding to the submodels and investigate the long term behavior of the submodels. We also consider the qualitative dynamics of the full model. Sensitivity analysis is done to determine the impact of some chosen parameters on the dynamics of malaria. Finally, numerical simulations illustrate the potential impact of the treatment scenarios and confirm our analytical results.


Sign in / Sign up

Export Citation Format

Share Document