scholarly journals The Rectilinear Crossing Number of $K_{10}$ is $62$

10.37236/1567 ◽  
2001 ◽  
Vol 8 (1) ◽  
Author(s):  
Alex Brodsky ◽  
Stephane Durocher ◽  
Ellen Gethner

The rectilinear crossing number of a graph $G$ is the minimum number of edge crossings that can occur in any drawing of $G$ in which the edges are straight line segments and no three vertices are collinear. This number has been known for $G=K_n$ if $n \leq 9$. Using a combinatorial argument we show that for $n=10$ the number is 62.

Author(s):  
ATSUSHI KANEKO ◽  
M. KANO ◽  
KIYOSHI YOSHIMOTO

Let X and Y be two disjoint sets of points in the plane such that |X|=|Y| and no three points of X ∪ Y are on the same line. Then we can draw an alternating Hamilton cycle on X∪Y in the plane which passes through alternately points of X and those of Y, whose edges are straight-line segments, and which contains at most |X|-1 crossings. Our proof gives an O(n2 log n) time algorithm for finding such an alternating Hamilton cycle, where n =|X|. Moreover we show that the above upper bound |X|-1 on crossing number is best possible for some configurations.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 925
Author(s):  
Michal Staš

The crossing number cr ( G ) of a graph G is the minimum number of edge crossings over all drawings of G in the plane. The main goal of the paper is to state the crossing number of the join product K 2 , 3 + C n for the complete bipartite graph K 2 , 3 , where C n is the cycle on n vertices. In the proofs, the idea of a minimum number of crossings between two distinct configurations in the various forms of arithmetic means will be extended. Finally, adding one more edge to the graph K 2 , 3 , we also offer the crossing number of the join product of one other graph with the cycle C n .


Author(s):  
János Barát ◽  
Géza Tóth

AbstractThe crossing number of a graph G is the minimum number of edge crossings over all drawings of G in the plane. A graph G is k-crossing-critical if its crossing number is at least k, but if we remove any edge of G, its crossing number drops below k. There are examples of k-crossing-critical graphs that do not have drawings with exactly k crossings. Richter and Thomassen proved in 1993 that if G is k-crossing-critical, then its crossing number is at most $$2.5\, k+16$$ 2.5 k + 16 . We improve this bound to $$2k+8\sqrt{k}+47$$ 2 k + 8 k + 47 .


2017 ◽  
Vol 27 (03) ◽  
pp. 159-176
Author(s):  
Helmut Alt ◽  
Sergio Cabello ◽  
Panos Giannopoulos ◽  
Christian Knauer

We study the complexity of the following cell connection problems in segment arrangements. Given a set of straight-line segments in the plane and two points [Formula: see text] and [Formula: see text] in different cells of the induced arrangement: [(i)] compute the minimum number of segments one needs to remove so that there is a path connecting [Formula: see text] to [Formula: see text] that does not intersect any of the remaining segments; [(ii)] compute the minimum number of segments one needs to remove so that the arrangement induced by the remaining segments has a single cell. We show that problems (i) and (ii) are NP-hard and discuss some special, tractable cases. Most notably, we provide a near-linear-time algorithm for a variant of problem (i) where the path connecting [Formula: see text] to [Formula: see text] must stay inside a given polygon [Formula: see text] with a constant number of holes, the segments are contained in [Formula: see text], and the endpoints of the segments are on the boundary of [Formula: see text]. The approach for this latter result uses homotopy of paths to group the segments into clusters with the property that either all segments in a cluster or none participate in an optimal solution.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2441
Author(s):  
Michal Staš

The crossing number of a graph G is the minimum number of edge crossings over all drawings of G in the plane. The main purpose of this paper is to determine the crossing numbers of the join products of six symmetric graphs on six vertices with paths and cycles on n vertices. The idea of configurations is generalized for the first time onto the family of subgraphs whose edges cross the edges of the considered graph at most once, and their lower bounds of necessary numbers of crossings are presented in the common symmetric table. Some proofs of the join products with cycles are done with the help of several well-known auxiliary statements, the idea of which is extended by a suitable classification of subgraphs that do not cross the edges of the examined graphs.


2021 ◽  
Vol 41 (1) ◽  
pp. 95-112
Author(s):  
Michal Staš ◽  
Juraj Valiska

The crossing number \(\mathrm{cr}(G)\) of a graph \(G\) is the minimum number of edge crossings over all drawings of \(G\) in the plane. The main aim of the paper is to give the crossing number of the join product \(W_4+P_n\) and \(W_4+C_n\) for the wheel \(W_4\) on five vertices, where \(P_n\) and \(C_n\) are the path and the cycle on \(n\) vertices, respectively. Yue et al. conjectured that the crossing number of \(W_m+C_n\) is equal to \(Z(m+1)Z(n)+(Z(m)-1) \big \lfloor \frac{n}{2} \big \rfloor + n+ \big\lceil\frac{m}{2}\big\rceil +2\), for all \(m,n \geq 3\), and where the Zarankiewicz's number \(Z(n)=\big \lfloor \frac{n}{2} \big \rfloor \big \lfloor \frac{n-1}{2} \big \rfloor\) is defined for \(n\geq 1\). Recently, this conjecture was proved for \(W_3+C_n\) by Klešč. We establish the validity of this conjecture for \(W_4+C_n\) and we also offer a new conjecture for the crossing number of the join product \(W_m+P_n\) for \(m\geq 3\) and \(n\geq 2\).


2013 ◽  
Vol 155 (1) ◽  
pp. 173-179 ◽  
Author(s):  
KYUNGPYO HONG ◽  
SUNGJONG NO ◽  
SEUNGSANG OH

AbstractThe lattice stick number sL(K) of a knot K is defined to be the minimal number of straight line segments required to construct a stick presentation of K in the cubic lattice. In this paper, we find an upper bound on the lattice stick number of a nontrivial knot K, except the trefoil knot, in terms of the minimal crossing number c(K) which is sL(K) ≤ 3c(K) + 2. Moreover if K is a non-alternating prime knot, then sL(K) ≤ 3c(K) − 4.


2012 ◽  
Vol 04 (03) ◽  
pp. 1250036 ◽  
Author(s):  
EVANGELOS KRANAKIS ◽  
DANNY KRIZANC ◽  
OSCAR MORALES PONCE ◽  
LADISLAV STACHO

2-Edge connectivity is an important fault tolerance property of a network because it maintains network communication despite the deletion of a single arbitrary edge. Planar spanning subgraphs have been shown to play a significant role for achieving local decentralized routing in wireless networks. Existing algorithmic constructions of spanning planar subgraphs of unit disk graphs (UDGs) such as Minimum Spanning Tree, Gabriel Graph, Nearest Neighborhood Graph, etc. do not always ensure connectivity of the resulting graph under single edge deletion. Furthermore, adding edges to the network so as to improve its edge connectivity not only may create edge crossings (at points which are not vertices) but it may also require edges of unbounded length. Thus we are faced with the problem of constructing 2-edge connected geometric planar spanning graphs by adding edges of bounded length without creating edge crossings (at points which are not vertices). To overcome this difficulty, in this paper we address the problem of augmenting the edge set (i.e., adding new edges) of planar geometric graphs with straight line edges of bounded length so that the resulting graph is planar and 2-edge connected. We provide bounds on the number of newly added straight-line edges, prove that such edges can be of length at most 3 times the max length of an edge of the original graph, and also show that the factor 3 is optimal. It is shown to be NP-Complete to augment a geometric planar graph to a 2-edge connected geometric planar graph with the minimum number of new edges of a given bounded length. We also provide a constant time algorithm that works in location-aware settings to augment a planar graph into a 2-edge connected planar graph with straight-line edges of length bounded by 3 times the longest edge of the original graph. It turns out that knowledge of vertex coordinates is crucial to our construction and in fact we prove that this problem cannot be solved locally if the vertices do not know their coordinates. Moreover, we provide a family of k-connected UDGs which does not have 2-edge connected spanning planar subgraphs, for any [Formula: see text].


2006 ◽  
Vol 15 (05) ◽  
pp. 613-629
Author(s):  
ERNESTO BRIBIESCA

An easy and fast algorithm for obtaining minimal discrete knots is presented. A minimal discrete knot is the digitalized representation of a knot, which is composed of the minimum number of constant orthogonal straight-line segments and is represented by the knot-number notation. The proposed algorithm for obtaining minimal discrete knots tries to reduce the number of straight-line segments of a given discrete knot preserving its shape. This algorithm is based on two fundamental transformations: U and L. In order to prove the efficiency and rapidity of the algorithm, a great variety of examples of discrete knots are presented: complete families of discrete knots at different orders; random discrete knots; examples of non-trivial and unsolved discrete knots.


10.37236/7581 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Robin Anderson ◽  
Shuliang Bai ◽  
Fidel Barrera-Cruz ◽  
Éva Czabarka ◽  
Giordano Da Lozzo ◽  
...  

Tanglegrams are special graphs that consist of a pair of rooted binary trees with the same number of leaves, and a perfect matching between the two leaf-sets. These objects are of use in phylogenetics and are represented with straight-line drawings where the leaves of the two plane binary trees are on two parallel lines and only the matching edges can cross. The tangle crossing number of a tanglegram is the minimum number of crossings over all such drawings and is related to biologically relevant quantities, such as the number of times a parasite switched hosts.Our main results for tanglegrams which parallel known theorems for crossing numbers are as follows. The removal of a single matching edge in a tanglegram with $n$ leaves decreases the tangle crossing number by at most $n-3$, and this is sharp. Additionally, if $\gamma(n)$ is the maximum tangle crossing number of a tanglegram with $n$ leaves, we prove $\frac{1}{2}\binom{n}{2}(1-o(1))\le\gamma(n)<\frac{1}{2}\binom{n}{2}$. For an arbitrary tanglegram $T$, the tangle crossing number, $\mathrm{crt}(T)$, is NP-hard to compute (Fernau et al. 2005). We provide an algorithm which lower bounds $\mathrm{crt}(T)$ and runs in $O(n^4)$ time. To demonstrate the strength of the algorithm, simulations on tanglegrams chosen uniformly at random suggest that the tangle crossing number is at least $0.055n^2$ with high probabilty, which matches the result that the tangle crossing number is $\Theta(n^2)$ with high probability (Czabarka et al. 2017).


Sign in / Sign up

Export Citation Format

Share Document