scholarly journals On the crossing numbers of join products of W_{4}+P_{n} and W_{4}+C_{n}

2021 ◽  
Vol 41 (1) ◽  
pp. 95-112
Author(s):  
Michal Staš ◽  
Juraj Valiska

The crossing number \(\mathrm{cr}(G)\) of a graph \(G\) is the minimum number of edge crossings over all drawings of \(G\) in the plane. The main aim of the paper is to give the crossing number of the join product \(W_4+P_n\) and \(W_4+C_n\) for the wheel \(W_4\) on five vertices, where \(P_n\) and \(C_n\) are the path and the cycle on \(n\) vertices, respectively. Yue et al. conjectured that the crossing number of \(W_m+C_n\) is equal to \(Z(m+1)Z(n)+(Z(m)-1) \big \lfloor \frac{n}{2} \big \rfloor + n+ \big\lceil\frac{m}{2}\big\rceil +2\), for all \(m,n \geq 3\), and where the Zarankiewicz's number \(Z(n)=\big \lfloor \frac{n}{2} \big \rfloor \big \lfloor \frac{n-1}{2} \big \rfloor\) is defined for \(n\geq 1\). Recently, this conjecture was proved for \(W_3+C_n\) by Klešč. We establish the validity of this conjecture for \(W_4+C_n\) and we also offer a new conjecture for the crossing number of the join product \(W_m+P_n\) for \(m\geq 3\) and \(n\geq 2\).

Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2441
Author(s):  
Michal Staš

The crossing number of a graph G is the minimum number of edge crossings over all drawings of G in the plane. The main purpose of this paper is to determine the crossing numbers of the join products of six symmetric graphs on six vertices with paths and cycles on n vertices. The idea of configurations is generalized for the first time onto the family of subgraphs whose edges cross the edges of the considered graph at most once, and their lower bounds of necessary numbers of crossings are presented in the common symmetric table. Some proofs of the join products with cycles are done with the help of several well-known auxiliary statements, the idea of which is extended by a suitable classification of subgraphs that do not cross the edges of the examined graphs.


Mathematics ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 925
Author(s):  
Michal Staš

The crossing number cr ( G ) of a graph G is the minimum number of edge crossings over all drawings of G in the plane. The main goal of the paper is to state the crossing number of the join product K 2 , 3 + C n for the complete bipartite graph K 2 , 3 , where C n is the cycle on n vertices. In the proofs, the idea of a minimum number of crossings between two distinct configurations in the various forms of arithmetic means will be extended. Finally, adding one more edge to the graph K 2 , 3 , we also offer the crossing number of the join product of one other graph with the cycle C n .


Author(s):  
János Barát ◽  
Géza Tóth

AbstractThe crossing number of a graph G is the minimum number of edge crossings over all drawings of G in the plane. A graph G is k-crossing-critical if its crossing number is at least k, but if we remove any edge of G, its crossing number drops below k. There are examples of k-crossing-critical graphs that do not have drawings with exactly k crossings. Richter and Thomassen proved in 1993 that if G is k-crossing-critical, then its crossing number is at most $$2.5\, k+16$$ 2.5 k + 16 . We improve this bound to $$2k+8\sqrt{k}+47$$ 2 k + 8 k + 47 .


1997 ◽  
Vol 6 (3) ◽  
pp. 353-358 ◽  
Author(s):  
LÁSZLÓ A. SZÉKELY

We show that an old but not well-known lower bound for the crossing number of a graph yields short proofs for a number of bounds in discrete plane geometry which were considered hard before: the number of incidences among points and lines, the maximum number of unit distances among n points, the minimum number of distinct distances among n points.


10.37236/1567 ◽  
2001 ◽  
Vol 8 (1) ◽  
Author(s):  
Alex Brodsky ◽  
Stephane Durocher ◽  
Ellen Gethner

The rectilinear crossing number of a graph $G$ is the minimum number of edge crossings that can occur in any drawing of $G$ in which the edges are straight line segments and no three vertices are collinear. This number has been known for $G=K_n$ if $n \leq 9$. Using a combinatorial argument we show that for $n=10$ the number is 62.


10.37236/7581 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Robin Anderson ◽  
Shuliang Bai ◽  
Fidel Barrera-Cruz ◽  
Éva Czabarka ◽  
Giordano Da Lozzo ◽  
...  

Tanglegrams are special graphs that consist of a pair of rooted binary trees with the same number of leaves, and a perfect matching between the two leaf-sets. These objects are of use in phylogenetics and are represented with straight-line drawings where the leaves of the two plane binary trees are on two parallel lines and only the matching edges can cross. The tangle crossing number of a tanglegram is the minimum number of crossings over all such drawings and is related to biologically relevant quantities, such as the number of times a parasite switched hosts.Our main results for tanglegrams which parallel known theorems for crossing numbers are as follows. The removal of a single matching edge in a tanglegram with $n$ leaves decreases the tangle crossing number by at most $n-3$, and this is sharp. Additionally, if $\gamma(n)$ is the maximum tangle crossing number of a tanglegram with $n$ leaves, we prove $\frac{1}{2}\binom{n}{2}(1-o(1))\le\gamma(n)<\frac{1}{2}\binom{n}{2}$. For an arbitrary tanglegram $T$, the tangle crossing number, $\mathrm{crt}(T)$, is NP-hard to compute (Fernau et al. 2005). We provide an algorithm which lower bounds $\mathrm{crt}(T)$ and runs in $O(n^4)$ time. To demonstrate the strength of the algorithm, simulations on tanglegrams chosen uniformly at random suggest that the tangle crossing number is at least $0.055n^2$ with high probabilty, which matches the result that the tangle crossing number is $\Theta(n^2)$ with high probability (Czabarka et al. 2017).


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 525
Author(s):  
Javier Rodrigo ◽  
Susana Merchán ◽  
Danilo Magistrali ◽  
Mariló López

In this paper, we improve the lower bound on the minimum number of  ≤k-edges in sets of n points in general position in the plane when k is close to n2. As a consequence, we improve the current best lower bound of the rectilinear crossing number of the complete graph Kn for some values of n.


2019 ◽  
Vol 35 (2) ◽  
pp. 137-146
Author(s):  
STEFAN BEREZNY ◽  
MICHAL STAS ◽  
◽  

The main purpose of this article is broaden known results concerning crossing numbers for join of graphs of order six. We give the crossing number of the join product G + Dn, where the graph G consists of one 5-cycle and of one isolated vertex, and Dn consists on n isolated vertices. The proof is done with the help of software that generates all cyclic permutations for a given number k, and creates a new graph COG for calculating the distances between all vertices of the graph. Finally, by adding some edges to the graph G, we are able to obtain the crossing numbers of the join product with the discrete graph Dn and with the path Pn on n vertices for other two graphs.


2013 ◽  
Vol 29 (1) ◽  
pp. 27-32
Author(s):  
MARIAN KLESC ◽  
◽  
JANA PETRILLOVA ◽  
MATUS VALO ◽  
◽  
...  

The crossing number cr(G) of a graph G is the minimal number of crossings over all drawings of G in the plane. The exact crossing number is known only for few specific families of graphs. Cartesian products of two graphs belong to the first families of graphs for which the crossing number has been studied. Some results concerning crossing numbers are also known for join products of two graphs. In the paper, we start to collect the crossing numbers for the strong product of graphs, namely for the strong product of two paths.


2020 ◽  
Vol 29 (04) ◽  
pp. 2050019
Author(s):  
Yuanan Diao

For an unoriented link [Formula: see text], let [Formula: see text] be the ropelength of [Formula: see text]. It is known that in general [Formula: see text] is at least of the order [Formula: see text], and at most of the order [Formula: see text] where [Formula: see text] is the minimum crossing number of [Formula: see text]. Furthermore, it is known that there exist families of (infinitely many) links with the property [Formula: see text]. A long standing open conjecture states that if [Formula: see text] is alternating, then [Formula: see text] is at least of the order [Formula: see text]. In this paper, we show that the braid index of a link also gives a lower bound of its ropelength. More specifically, we show that there exists a constant [Formula: see text] such that [Formula: see text] for any [Formula: see text], where [Formula: see text] is the largest braid index among all braid indices corresponding to all possible orientation assignments of the components of [Formula: see text] (called the maximum braid index of [Formula: see text]). Consequently, [Formula: see text] for any link [Formula: see text] whose maximum braid index is proportional to its crossing number. In the case of alternating links, the maximum braid indices for many of them are proportional to their crossing numbers hence the above conjecture holds for these alternating links.


Sign in / Sign up

Export Citation Format

Share Document