scholarly journals Analogies between the Crossing Number and the Tangle Crossing Number

10.37236/7581 ◽  
2018 ◽  
Vol 25 (4) ◽  
Author(s):  
Robin Anderson ◽  
Shuliang Bai ◽  
Fidel Barrera-Cruz ◽  
Éva Czabarka ◽  
Giordano Da Lozzo ◽  
...  

Tanglegrams are special graphs that consist of a pair of rooted binary trees with the same number of leaves, and a perfect matching between the two leaf-sets. These objects are of use in phylogenetics and are represented with straight-line drawings where the leaves of the two plane binary trees are on two parallel lines and only the matching edges can cross. The tangle crossing number of a tanglegram is the minimum number of crossings over all such drawings and is related to biologically relevant quantities, such as the number of times a parasite switched hosts.Our main results for tanglegrams which parallel known theorems for crossing numbers are as follows. The removal of a single matching edge in a tanglegram with $n$ leaves decreases the tangle crossing number by at most $n-3$, and this is sharp. Additionally, if $\gamma(n)$ is the maximum tangle crossing number of a tanglegram with $n$ leaves, we prove $\frac{1}{2}\binom{n}{2}(1-o(1))\le\gamma(n)<\frac{1}{2}\binom{n}{2}$. For an arbitrary tanglegram $T$, the tangle crossing number, $\mathrm{crt}(T)$, is NP-hard to compute (Fernau et al. 2005). We provide an algorithm which lower bounds $\mathrm{crt}(T)$ and runs in $O(n^4)$ time. To demonstrate the strength of the algorithm, simulations on tanglegrams chosen uniformly at random suggest that the tangle crossing number is at least $0.055n^2$ with high probabilty, which matches the result that the tangle crossing number is $\Theta(n^2)$ with high probability (Czabarka et al. 2017).

1997 ◽  
Vol 6 (3) ◽  
pp. 353-358 ◽  
Author(s):  
LÁSZLÓ A. SZÉKELY

We show that an old but not well-known lower bound for the crossing number of a graph yields short proofs for a number of bounds in discrete plane geometry which were considered hard before: the number of incidences among points and lines, the maximum number of unit distances among n points, the minimum number of distinct distances among n points.


Author(s):  
ATSUSHI KANEKO ◽  
M. KANO ◽  
KIYOSHI YOSHIMOTO

Let X and Y be two disjoint sets of points in the plane such that |X|=|Y| and no three points of X ∪ Y are on the same line. Then we can draw an alternating Hamilton cycle on X∪Y in the plane which passes through alternately points of X and those of Y, whose edges are straight-line segments, and which contains at most |X|-1 crossings. Our proof gives an O(n2 log n) time algorithm for finding such an alternating Hamilton cycle, where n =|X|. Moreover we show that the above upper bound |X|-1 on crossing number is best possible for some configurations.


10.37236/831 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Paz Carmi ◽  
Vida Dujmović ◽  
Pat Morin ◽  
David R. Wood

The distance-number of a graph $G$ is the minimum number of distinct edge-lengths over all straight-line drawings of $G$ in the plane. This definition generalises many well-known concepts in combinatorial geometry. We consider the distance-number of trees, graphs with no $K^-_4$-minor, complete bipartite graphs, complete graphs, and cartesian products. Our main results concern the distance-number of graphs with bounded degree. We prove that $n$-vertex graphs with bounded maximum degree and bounded treewidth have distance-number in ${\cal O}(\log n)$. To conclude such a logarithmic upper bound, both the degree and the treewidth need to be bounded. In particular, we construct graphs with treewidth $2$ and polynomial distance-number. Similarly, we prove that there exist graphs with maximum degree $5$ and arbitrarily large distance-number. Moreover, as $\Delta$ increases the existential lower bound on the distance-number of $\Delta$-regular graphs tends to $\Omega(n^{0.864138})$.


2003 ◽  
Vol 13 (06) ◽  
pp. 487-505 ◽  
Author(s):  
ASHIM GARG ◽  
ADRIAN RUSU

Ordered trees are generally drawn using order-preserving planar straight-line grid drawings. We investigate the area-requirements of such drawings and present several results. Let T be an ordered tree with n nodes. We show that: • T admits an order-preserving planar straight-line grid drawing with O(n log n) area. • If T is a binary tree, then T admits an order-preserving planar straight-line grid drawing with O(n log log n) area. • If T is a binary tree, then T admits an order-preserving upward planar straight-line grid drawing with optimalO(n log n) area. We also study the problem of drawing binary trees with user-specified aspect ratios. We show that an ordered binary tree T with n nodes admits an order-preserving planar straight-line grid drawing with area O(n log n), and any user-specified aspect ratio in the range [1,n/ log n]. All the drawings mentioned above can be constructed in O(n) time.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2441
Author(s):  
Michal Staš

The crossing number of a graph G is the minimum number of edge crossings over all drawings of G in the plane. The main purpose of this paper is to determine the crossing numbers of the join products of six symmetric graphs on six vertices with paths and cycles on n vertices. The idea of configurations is generalized for the first time onto the family of subgraphs whose edges cross the edges of the considered graph at most once, and their lower bounds of necessary numbers of crossings are presented in the common symmetric table. Some proofs of the join products with cycles are done with the help of several well-known auxiliary statements, the idea of which is extended by a suitable classification of subgraphs that do not cross the edges of the examined graphs.


2021 ◽  
Vol 41 (1) ◽  
pp. 95-112
Author(s):  
Michal Staš ◽  
Juraj Valiska

The crossing number \(\mathrm{cr}(G)\) of a graph \(G\) is the minimum number of edge crossings over all drawings of \(G\) in the plane. The main aim of the paper is to give the crossing number of the join product \(W_4+P_n\) and \(W_4+C_n\) for the wheel \(W_4\) on five vertices, where \(P_n\) and \(C_n\) are the path and the cycle on \(n\) vertices, respectively. Yue et al. conjectured that the crossing number of \(W_m+C_n\) is equal to \(Z(m+1)Z(n)+(Z(m)-1) \big \lfloor \frac{n}{2} \big \rfloor + n+ \big\lceil\frac{m}{2}\big\rceil +2\), for all \(m,n \geq 3\), and where the Zarankiewicz's number \(Z(n)=\big \lfloor \frac{n}{2} \big \rfloor \big \lfloor \frac{n-1}{2} \big \rfloor\) is defined for \(n\geq 1\). Recently, this conjecture was proved for \(W_3+C_n\) by Klešč. We establish the validity of this conjecture for \(W_4+C_n\) and we also offer a new conjecture for the crossing number of the join product \(W_m+P_n\) for \(m\geq 3\) and \(n\geq 2\).


10.37236/1567 ◽  
2001 ◽  
Vol 8 (1) ◽  
Author(s):  
Alex Brodsky ◽  
Stephane Durocher ◽  
Ellen Gethner

The rectilinear crossing number of a graph $G$ is the minimum number of edge crossings that can occur in any drawing of $G$ in which the edges are straight line segments and no three vertices are collinear. This number has been known for $G=K_n$ if $n \leq 9$. Using a combinatorial argument we show that for $n=10$ the number is 62.


Sign in / Sign up

Export Citation Format

Share Document