Oriented Matroids

10.37236/25 ◽  
2002 ◽  
Vol 1000 ◽  
Author(s):  
Günter M. Ziegler

This dynamic survey offers an “entry point” for current research in oriented matroids. For this, it provides updates on the 1993 monograph “Oriented Matroids” by Bjö̈rner, Las Vergnas, Sturmfels, White & Ziegler [85], in three parts: 1. a sketch of a few “Frontiers of Research” in oriented matroid theory, 2. an update of corrections, comments and progress as compared to [85], and 3. an extensive, complete and up-to-date bibliography of oriented matroids, comprising and extending the bibliography of [85].

2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Cesar Ceballos ◽  
Arnau Padrol ◽  
Camilo Sarmiento

International audience We introduce the Dyck path triangulation of the cartesian product of two simplices $\Delta_{n-1}\times\Delta_{n-1}$. The maximal simplices of this triangulation are given by Dyck paths, and its construction naturally generalizes to produce triangulations of $\Delta_{r\ n-1}\times\Delta_{n-1}$ using rational Dyck paths. Our study of the Dyck path triangulation is motivated by extendability problems of partial triangulations of products of two simplices. We show that whenever$m\geq k>n$, any triangulations of $\Delta_{m-1}^{(k-1)}\times\Delta_{n-1}$ extends to a unique triangulation of $\Delta_{m-1}\times\Delta_{n-1}$. Moreover, with an explicit construction, we prove that the bound $k>n$ is optimal. We also exhibit interpretations of our results in the language of tropical oriented matroids, which are analogous to classical results in oriented matroid theory. Nous introduisons la triangulation par chemins de Dyck du produit cartésien de deux simplexes $\Delta_{n-1}\times\Delta_{n-1}$. Les simplexes maximaux de cette triangulation sont donnés par des chemins de Dyck, et cette construction se généralise de façon naturelle pour produire des triangulations $\Delta_{r\ n-1}\times\Delta_{n-1}$ qui utilisent des chemins de Dyck rationnels. Notre étude de la triangulation par chemins de Dyck est motivée par des problèmes de prolongement de triangulations partielles de produits de deux simplexes. On montre que $m\geq k>n$ alors toute triangulation de $\Delta_{m-1}^{(k-1)}\times\Delta_{n-1}$ se prolonge en une unique triangulation de $\Delta_{m-1}\times\Delta_{n-1}$. De plus, avec une construction explicite, nous montrons que la borne $k>n$ est optimale. Nous présentons aussi des interprétations de nos résultats dans le langage des matroïdes orientés tropicaux, qui sont analogues aux résultats classiques de la théorie des matroïdes orientés.


2005 ◽  
Vol 147 (2-3) ◽  
pp. 345-361 ◽  
Author(s):  
Ernesto Staffetti ◽  
Antoni Grau ◽  
Francesc Serratosa ◽  
Alberto Sanfeliu

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Suho Oh ◽  
Hwanchul Yoo

International audience Develin and Sturmfels showed that regular triangulations of $\Delta_{n-1} \times \Delta_{d-1}$ can be thought of as tropical polytopes. Tropical oriented matroids were defined by Ardila and Develin, and were conjectured to be in bijection with all subdivisions of $\Delta_{n-1} \times \Delta_{d-1}$. In this paper, we show that any triangulation of $\Delta_{n-1} \times \Delta_{d-1}$ encodes a tropical oriented matroid. We also suggest a new class of combinatorial objects that may describe all subdivisions of a bigger class of polytopes. Develin et Sturmfels ont montré que les triangulations de $\Delta_{n-1} \times \Delta_{d-1}$ peuvent être considérées comme des polytopes tropicaux. Les matroïdes orientés tropicaux ont été définis par Ardila et Develin, et ils ont été conjecturés être en bijection avec les subdivisions de $\Delta_{n-1} \times \Delta_{d-1}$. Dans cet article, nous montrons que toute triangulation de $\Delta_{n-1} \times \Delta_{d-1}$ encode un matroïde orienté tropical. De plus, nous proposons une nouvelle classe d'objets combinatoires qui peuvent décrire toutes les subdivisions d'une plus grande classe de polytopes.


10.37236/1455 ◽  
1999 ◽  
Vol 6 (1) ◽  
Author(s):  
Matt Scobee

A rational matrix is totally dyadic if all of its nonzero subdeterminants are in $\{\pm 2^k\ :\ k \in {\bf Z}\}$. An oriented matriod is dyadic if it has a totally dyadic representation $A$. A dyadic oriented matriod is dyadic of order $k$ if it has a totally dyadic representation $A$ with full row rank and with the property that for each pair of adjacent bases $A_1$ and $A_2$ $$2^{-k} \le \left| { {\det(A_1)} \over {\det(A_2)}}\right|\le 2^k.$$ In this note we present a counterexample to a conjecture on the relationship between the order of a dyadic oriented matroid and the ratio of agreement to disagreement in sign of its signed circuits and cocircuits (Conjecture 5.2, Lee (1990)).


1990 ◽  
Vol 42 (1) ◽  
pp. 62-79 ◽  
Author(s):  
Margaret Bayer ◽  
Bernd Sturmfels

In 1980 Jim Lawrence suggested a construction Λ which assigns to a given rank r oriented matroid M on n points a rank n + r oriented matroid Λ(M) on 2n points such that the face lattice of Λ(M) is polytopal if and only if M is realizable. The Λ-construction generalized a technique used by Perles to construct a nonrational polytope [10]. It was used by Lawrence to prove that the class of polytopal lattices is strictly contained in the class of face lattices of oriented matroids (unpublished) and by Billera and Munson to show that the latter class is not closed under polarity. See [4] for a discussion of this construction and both of these applications.


10.37236/1887 ◽  
2006 ◽  
Vol 11 (2) ◽  
Author(s):  
Emeric Gioan ◽  
Michel Las Vergnas

Comparing two expressions of the Tutte polynomial of an ordered oriented matroid yields a remarkable numerical relation between the numbers of reorientations and bases with given activities. A natural activity preserving reorientation-to-basis mapping compatible with this relation is described in a series of papers by the present authors. This mapping, equivalent to a bijection between regions and no broken circuit subsets, provides a bijective version of several enumerative results due to Stanley, Winder, Zaslavsky, and Las Vergnas, expressing the number of acyclic orientations in graphs, or the number of regions in real arrangements of hyperplanes or pseudohyperplanes (i.e. oriented matroids), as evaluations of the Tutte polynomial. In the present paper, we consider in detail the supersolvable case – a notion introduced by Stanley – in the context of arrangements of hyperplanes. For linear orderings compatible with the supersolvable structure, special properties are available, yielding constructions significantly simpler than those in the general case. As an application, we completely carry out the computation of the active bijection for the Coxeter arrangements $A_n$ and $B_n$. It turns out that in both cases the active bijection is closely related to a classical bijection between permutations and increasing trees.


Sign in / Sign up

Export Citation Format

Share Document