scholarly journals On a Conjecture Concerning Dyadic Oriented Matroids

10.37236/1455 ◽  
1999 ◽  
Vol 6 (1) ◽  
Author(s):  
Matt Scobee

A rational matrix is totally dyadic if all of its nonzero subdeterminants are in $\{\pm 2^k\ :\ k \in {\bf Z}\}$. An oriented matriod is dyadic if it has a totally dyadic representation $A$. A dyadic oriented matriod is dyadic of order $k$ if it has a totally dyadic representation $A$ with full row rank and with the property that for each pair of adjacent bases $A_1$ and $A_2$ $$2^{-k} \le \left| { {\det(A_1)} \over {\det(A_2)}}\right|\le 2^k.$$ In this note we present a counterexample to a conjecture on the relationship between the order of a dyadic oriented matroid and the ratio of agreement to disagreement in sign of its signed circuits and cocircuits (Conjecture 5.2, Lee (1990)).

2011 ◽  
Vol DMTCS Proceedings vol. AO,... (Proceedings) ◽  
Author(s):  
Suho Oh ◽  
Hwanchul Yoo

International audience Develin and Sturmfels showed that regular triangulations of $\Delta_{n-1} \times \Delta_{d-1}$ can be thought of as tropical polytopes. Tropical oriented matroids were defined by Ardila and Develin, and were conjectured to be in bijection with all subdivisions of $\Delta_{n-1} \times \Delta_{d-1}$. In this paper, we show that any triangulation of $\Delta_{n-1} \times \Delta_{d-1}$ encodes a tropical oriented matroid. We also suggest a new class of combinatorial objects that may describe all subdivisions of a bigger class of polytopes. Develin et Sturmfels ont montré que les triangulations de $\Delta_{n-1} \times \Delta_{d-1}$ peuvent être considérées comme des polytopes tropicaux. Les matroïdes orientés tropicaux ont été définis par Ardila et Develin, et ils ont été conjecturés être en bijection avec les subdivisions de $\Delta_{n-1} \times \Delta_{d-1}$. Dans cet article, nous montrons que toute triangulation de $\Delta_{n-1} \times \Delta_{d-1}$ encode un matroïde orienté tropical. De plus, nous proposons une nouvelle classe d'objets combinatoires qui peuvent décrire toutes les subdivisions d'une plus grande classe de polytopes.


10.37236/25 ◽  
2002 ◽  
Vol 1000 ◽  
Author(s):  
Günter M. Ziegler

This dynamic survey offers an “entry point” for current research in oriented matroids. For this, it provides updates on the 1993 monograph “Oriented Matroids” by Bjö̈rner, Las Vergnas, Sturmfels, White & Ziegler [85], in three parts: 1. a sketch of a few “Frontiers of Research” in oriented matroid theory, 2. an update of corrections, comments and progress as compared to [85], and 3. an extensive, complete and up-to-date bibliography of oriented matroids, comprising and extending the bibliography of [85].


1990 ◽  
Vol 42 (1) ◽  
pp. 62-79 ◽  
Author(s):  
Margaret Bayer ◽  
Bernd Sturmfels

In 1980 Jim Lawrence suggested a construction Λ which assigns to a given rank r oriented matroid M on n points a rank n + r oriented matroid Λ(M) on 2n points such that the face lattice of Λ(M) is polytopal if and only if M is realizable. The Λ-construction generalized a technique used by Perles to construct a nonrational polytope [10]. It was used by Lawrence to prove that the class of polytopal lattices is strictly contained in the class of face lattices of oriented matroids (unpublished) and by Billera and Munson to show that the latter class is not closed under polarity. See [4] for a discussion of this construction and both of these applications.


10.37236/1887 ◽  
2006 ◽  
Vol 11 (2) ◽  
Author(s):  
Emeric Gioan ◽  
Michel Las Vergnas

Comparing two expressions of the Tutte polynomial of an ordered oriented matroid yields a remarkable numerical relation between the numbers of reorientations and bases with given activities. A natural activity preserving reorientation-to-basis mapping compatible with this relation is described in a series of papers by the present authors. This mapping, equivalent to a bijection between regions and no broken circuit subsets, provides a bijective version of several enumerative results due to Stanley, Winder, Zaslavsky, and Las Vergnas, expressing the number of acyclic orientations in graphs, or the number of regions in real arrangements of hyperplanes or pseudohyperplanes (i.e. oriented matroids), as evaluations of the Tutte polynomial. In the present paper, we consider in detail the supersolvable case – a notion introduced by Stanley – in the context of arrangements of hyperplanes. For linear orderings compatible with the supersolvable structure, special properties are available, yielding constructions significantly simpler than those in the general case. As an application, we completely carry out the computation of the active bijection for the Coxeter arrangements $A_n$ and $B_n$. It turns out that in both cases the active bijection is closely related to a classical bijection between permutations and increasing trees.


2015 ◽  
Vol DMTCS Proceedings, 27th... (Proceedings) ◽  
Author(s):  
Cesar Ceballos ◽  
Arnau Padrol ◽  
Camilo Sarmiento

International audience We introduce the Dyck path triangulation of the cartesian product of two simplices $\Delta_{n-1}\times\Delta_{n-1}$. The maximal simplices of this triangulation are given by Dyck paths, and its construction naturally generalizes to produce triangulations of $\Delta_{r\ n-1}\times\Delta_{n-1}$ using rational Dyck paths. Our study of the Dyck path triangulation is motivated by extendability problems of partial triangulations of products of two simplices. We show that whenever$m\geq k>n$, any triangulations of $\Delta_{m-1}^{(k-1)}\times\Delta_{n-1}$ extends to a unique triangulation of $\Delta_{m-1}\times\Delta_{n-1}$. Moreover, with an explicit construction, we prove that the bound $k>n$ is optimal. We also exhibit interpretations of our results in the language of tropical oriented matroids, which are analogous to classical results in oriented matroid theory. Nous introduisons la triangulation par chemins de Dyck du produit cartésien de deux simplexes $\Delta_{n-1}\times\Delta_{n-1}$. Les simplexes maximaux de cette triangulation sont donnés par des chemins de Dyck, et cette construction se généralise de façon naturelle pour produire des triangulations $\Delta_{r\ n-1}\times\Delta_{n-1}$ qui utilisent des chemins de Dyck rationnels. Notre étude de la triangulation par chemins de Dyck est motivée par des problèmes de prolongement de triangulations partielles de produits de deux simplexes. On montre que $m\geq k>n$ alors toute triangulation de $\Delta_{m-1}^{(k-1)}\times\Delta_{n-1}$ se prolonge en une unique triangulation de $\Delta_{m-1}\times\Delta_{n-1}$. De plus, avec une construction explicite, nous montrons que la borne $k>n$ est optimale. Nous présentons aussi des interprétations de nos résultats dans le langage des matroïdes orientés tropicaux, qui sont analogues aux résultats classiques de la théorie des matroïdes orientés.


2014 ◽  
Vol DMTCS Proceedings vol. AT,... (Proceedings) ◽  
Author(s):  
Federico Ardila ◽  
Felipe Rincón ◽  
Lauren Williams

International audience We investigate the role that non-crossing partitions play in the study of positroids, a class of matroids introduced by Postnikov. We prove that every positroid can be constructed uniquely by choosing a non-crossing partition on the ground set, and then freely placing the structure of a connected positroid on each of the blocks of the partition. We use this to enumerate connected positroids, and we prove that the probability that a positroid on [n] is connected equals $1/e^2$ asymptotically. We also prove da Silva's 1987 conjecture that any positively oriented matroid is a positroid; that is, it can be realized by a set of vectors in a real vector space. It follows from this result that the positive matroid Grassmannian (or <i>positive MacPhersonian</i>) is homeomorphic to a closed ball.


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Silke Horn

International audience Tropical oriented matroids were defined by Ardila and Develin in 2007. They are a tropical analogue of classical oriented matroids in the sense that they encode the properties of the types of points in an arrangement of tropical hyperplanes – in much the same way as the covectors of (classical) oriented matroids describe the types in arrangements of linear hyperplanes. Not every oriented matroid can be realised by an arrangement of linear hyperplanes though. The famous Topological Representation Theorem by Folkman and Lawrence, however, states that every oriented matroid can be represented as an arrangement of $\textit{pseudo}$hyperplanes. Ardila and Develin proved that tropical oriented matroids can be represented as mixed subdivisions of dilated simplices. In this paper I prove that this correspondence is a bijection. Moreover, I present a tropical analogue for the Topological Representation Theorem. La notion de matroïde orientè tropical a été introduite par Ardila et Develin en 2007. Ils sont un analogue des matroïdes orientés classiques dans le sens où ils codent les propriétés des types de points dans un arrangement d'hyperplans tropicaux – d'une manière très similaire à celle dont les covecteurs des matroïdes orientés (classiques) décrivent les types de points dans les arrangements d'hyperplans linéaires. Tous les matroïdes orientés ne peuvent pas être représentés par un arrangement d'hyperplans linéaires. Cependant le célèbre théorème de représentation topologique de Folkman et Lawrence affirme que tout matroïde orientè peut être représenté par un arrangement de $\textit{pseudo}$-hyperplans. Ardila et Develin ont prouvè que les matroïdes orientés tropicaux peuvent être représentés par des sous-divisions mixtes de simplexes dilatés. Je prouve dans cet article que cette correspondance est une bijection. Je présente en outre, un analogue tropical du théorème de représentation topologique.


2021 ◽  
Vol 274 (1345) ◽  
Author(s):  
Stuart Margolis ◽  
Franco Saliola ◽  
Benjamin Steinberg

In recent years it has been noted that a number of combinatorial structures such as real and complex hyperplane arrangements, interval greedoids, matroids and oriented matroids have the structure of a finite monoid called a left regular band. Random walks on the monoid model a number of interesting Markov chains such as the Tsetlin library and riffle shuffle. The representation theory of left regular bands then comes into play and has had a major influence on both the combinatorics and the probability theory associated to such structures. In a recent paper, the authors established a close connection between algebraic and combinatorial invariants of a left regular band by showing that certain homological invariants of the algebra of a left regular band coincide with the cohomology of order complexes of posets naturally associated to the left regular band. The purpose of the present monograph is to further develop and deepen the connection between left regular bands and poset topology. This allows us to compute finite projective resolutions of all simple modules of unital left regular band algebras over fields and much more. In the process, we are led to define the class of CW left regular bands as the class of left regular bands whose associated posets are the face posets of regular CW complexes. Most of the examples that have arisen in the literature belong to this class. A new and important class of examples is a left regular band structure on the face poset of a CAT(0) cube complex. Also, the recently introduced notion of a COM (complex of oriented matroids or conditional oriented matroid) fits nicely into our setting and includes CAT(0) cube complexes and certain more general CAT(0) zonotopal complexes. A fairly complete picture of the representation theory for CW left regular bands is obtained.


10.37236/9653 ◽  
2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Ilan Adler ◽  
Jesús A. De Loera ◽  
Steven Klee ◽  
Zhenyang Zhang

Oriented matroids are combinatorial structures that generalize point configurations, vector configurations, hyperplane arrangements, polyhedra, linear programs, and directed graphs. Oriented matroids have played a key  role in combinatorics, computational geometry, and optimization. This paper surveys prior work and presents an update on the search for bounds on the diameter of the cocircuit graph of an oriented matroid. The motivation for our investigations is the complexity of the simplex method and the criss-cross method. We review the diameter problem and show the diameter bounds of general oriented matroids reduce to those of uniform oriented matroids. We give the latest exact bounds for oriented matroids of low rank and low corank, and for all oriented matroids with up to nine elements (this part required a large computer-based proof).  For arbitrary oriented matroids, we present an improvement to a quadratic bound of Finschi. Our discussion highlights an old conjecture that states a linear bound for the diameter is possible. On the positive side, we show the conjecture is true for oriented matroids of low rank and low corank, and, verified with computers, for all oriented matroids with up to nine elements. On the negative side, our computer search showed two natural strengthenings of the main conjecture are false. 


2012 ◽  
Vol DMTCS Proceedings vol. AR,... (Proceedings) ◽  
Author(s):  
Arnau Padrol

International audience A $d$-polytope $P$ is neighborly if every subset of $\lfloor\frac{d}{2}\rfloor $vertices is a face of $P$. In 1982, Shemer introduced a sewing construction that allows to add a vertex to a neighborly polytope in such a way as to obtain a new neighborly polytope. With this, he constructed superexponentially many different neighborly polytopes. The concept of neighborliness extends naturally to oriented matroids. Duals of neighborly oriented matroids also have a nice characterization: balanced oriented matroids. In this paper, we generalize Shemer's sewing construction to oriented matroids, providing a simpler proof. Moreover we provide a new technique that allows to construct balanced oriented matroids. In the dual setting, it constructs a neighborly oriented matroid whose contraction at a particular vertex is a prescribed neighborly oriented matroid. We compare the families of polytopes that can be constructed with both methods, and show that the new construction allows to construct many new polytopes. Un $d$-polytope $P$ est $\textit{neighborly}$ si tout sous-ensemble de $\lfloor\frac{d}{2}\rfloor $ sommets forme une face de $P$. En 1982, Shemer a introduit une construction de couture qui permet de rajouter un sommet à un polytope $\textit{neighborly}$ et d'obtenir un nouveau polytope $\textit{neighborly}$. Cette construction lui permet de construire un nombre super-exponentiel de polytopes $\textit{neighborly}$ distincts. Le concept de $\textit{neighborliness}$ s'étend naturellement aux matroïdes orientés. Les duaux de matroïdes orientés $\textit{neighborly}$ ont de plus une belle caractérisation: ce sont les matroïdes orientés équilibrés. Dans cet article, nous généralisons la construction de couture de Shemer aux matroïdes orientés, ce qui en fournit une démonstration plus simple. Par ailleurs, nous proposons une nouvelle technique qui permet de construire matroïdes orientés équilibrés. Dans le cadre dual, on obtient un matroïde $\textit{neighborly}$ dont la contraction à un sommet distinguè est un matroïde $\textit{neighborly}$ prescrit. Nous comparons les familles de polytopes qui peuvent être construites avec ces deux méthodes, et montrons que la nouvelle construction permet de construire plusieurs nouveaux polytopes.


Sign in / Sign up

Export Citation Format

Share Document