scholarly journals Lower Bounds on Words Separation: Are There Short Identities in Transformation Semigroups?

10.37236/6450 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Andrei A. Bulatov ◽  
Olga Karpova ◽  
Arseny M. Shur ◽  
Konstantin Startsev

The words separation problem, originally formulated by Goralcik and Koubek (1986), is stated as follows. Let $Sep(n)$ be the minimum number such that for any two words of length $\le n$ there is a deterministic finite automaton with $Sep(n)$ states, accepting exactly one of them. The problem is to find the asymptotics of the function $Sep$. This problem is inverse to finding the asymptotics of the length of the shortest identity in full transformation semigroups $T_k$. The known lower bound on $Sep$ stems from the unary identity in $T_k$. We find the first series of identities in $T_k$ which are shorter than the corresponding unary identity for infinitely many values of $k$, and thus slightly improve the lower bound on $Sep(n)$. Then we present some short positive identities in symmetric groups, improving the lower bound on separating words by permutational automata by a multiplicative constant. Finally, we present the results of computer search for short identities for small $k$.

2013 ◽  
Vol 12 (08) ◽  
pp. 1350041 ◽  
Author(s):  
LEI SUN ◽  
JUNLING SUN

Let [Formula: see text] be the full transformation semigroup on a nonempty set X and E be an equivalence relation on X. Then [Formula: see text] is a subsemigroup of [Formula: see text]. In this paper, we endow it with the natural partial order. With respect to this partial order, we determine when two elements are related, find the elements which are compatible and describe the maximal (minimal) elements. Also, we investigate the greatest lower bound of two elements.


Author(s):  
J. M. Howie

SynopsisIf |X| = n and α is a singular mapping in J(X), define c(α) to be the number of cyclic orbits of α and f(α) to be the number of fixed points. Then α is expressible as a product of n + c(α)−f(α) idempotents of rank n − 1, and no smaller number of idempotents of rank n − 1 will suffice. The maximum possible value of n + c(α)–f(α) is [3/2(n − 1)], which is thus a best possible global lower bound for the number of idempotents required to generate a singular element of J(X).


2021 ◽  
Vol 68 (4) ◽  
pp. 1-26
Author(s):  
Albert Atserias ◽  
Ilario Bonacina ◽  
Susanna F. De Rezende ◽  
Massimo Lauria ◽  
Jakob Nordström ◽  
...  

We prove that for k ≪ 4√ n regular resolution requires length n Ω( k ) to establish that an Erdős–Rényi graph with appropriately chosen edge density does not contain a k -clique. This lower bound is optimal up to the multiplicative constant in the exponent and also implies unconditional n Ω( k ) lower bounds on running time for several state-of-the-art algorithms for finding maximum cliques in graphs.


2012 ◽  
Vol 12 (1&2) ◽  
pp. 138-148
Author(s):  
Cheng Lu ◽  
Jianxin Chen ◽  
Runyao Duan

We prove a lower bound on the $q$-maximal fidelities between two quantum channels $\E_0$ and $\E_1$ and an upper bound on the $q$-maximal fidelities between a quantum channel $\E$ and an identity $\I$. Then we apply these two bounds to provide a simple sufficient and necessary condition for sequential perfect distinguishability between $\E$ and $\I$ and provide both a lower bound and an upper bound on the minimum number of queries required to sequentially perfectly discriminating $\E$ and $\I$. Interestingly, in the $2$-dimensional case, both bounds coincide. Based on the optimal perfect discrimination protocol presented in \cite{DFY09}, we can further generalize the lower bound and upper bound to the minimum number of queries to perfectly discriminating $\E$ and $I$ over all possible discrimination schemes. Finally the two lower bounds are shown remain working for perfectly discriminating general two quantum channels $\E_0$ and $\E_1$ in sequential scheme and over all possible discrimination schemes respectively.


Author(s):  
John M. Howie

SynopsisLet E be the set of idempotents in Sn, the semigroup of all singular selfmaps of {1,…, n}. For each α in Sn, there is a unique (κ(α)≧1 such that αψEκ,(α). It is known that κ(α)≦ n + cycl α -fix α, where cyclα is the number of cyclic orbits of a and fix α is the number of fixed points. Equality holds only in the case where a is of rank n – 1. An improved upper bound is obtained for κ(α), applying to elements of arbitrary rank. A lower bound is obtained also.


10.37236/3684 ◽  
2013 ◽  
Vol 20 (4) ◽  
Author(s):  
Jan Goedgebeur ◽  
Stanisław P. Radziszowski

Using computer algorithms we establish that the Ramsey number $R(3,K_{10}-e)$ is equal to 37, which solves the smallest open case for Ramsey numbers of this type. We also obtain new upper bounds for the cases of $R(3,K_k-e)$ for $11 \le k \le 16$, and show by construction a new lower bound $55 \le R(3,K_{13}-e)$.The new upper bounds on $R(3,K_k-e)$ are obtained by using the values and lower bounds on $e(3,K_l-e,n)$ for $l \le k$, where $e(3,K_k-e,n)$ is the minimum number of edges in any triangle-free graph on $n$ vertices without $K_k-e$ in the complement. We complete the computation of the exact values of $e(3,K_k-e,n)$ for all $n$ with $k \leq 10$ and for $n \leq 34$ with $k = 11$, and establish many new lower bounds on $e(3,K_k-e,n)$ for higher values of $k$.Using the maximum triangle-free graph generation method, we determine two other previously unknown Ramsey numbers, namely $R(3,K_{10}-K_3-e)=31$ and $R(3,K_{10}-P_3-e)=31$. For graphs $G$ on 10 vertices, besides $G=K_{10}$, this leaves 6 open cases of the form $R(3,G)$. The hardest among them appears to be $G=K_{10}-2K_2$, for which we establish the bounds $31 \le R(3,K_{10}-2K_2) \le 33$.


10.37236/1188 ◽  
1994 ◽  
Vol 1 (1) ◽  
Author(s):  
Geoffrey Exoo

For $k \geq 5$, we establish new lower bounds on the Schur numbers $S(k)$ and on the k-color Ramsey numbers of $K_3$.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 164
Author(s):  
Tobias Rupp ◽  
Stefan Funke

We prove a Ω(n) lower bound on the query time for contraction hierarchies (CH) as well as hub labels, two popular speed-up techniques for shortest path routing. Our construction is based on a graph family not too far from subgraphs that occur in real-world road networks, in particular, it is planar and has a bounded degree. Additionally, we borrow ideas from our lower bound proof to come up with instance-based lower bounds for concrete road network instances of moderate size, reaching up to 96% of an upper bound given by a constructed CH. For a variant of our instance-based schema applied to some special graph classes, we can even show matching upper and lower bounds.


2021 ◽  
Vol 13 (3) ◽  
pp. 1-21
Author(s):  
Suryajith Chillara

In this article, we are interested in understanding the complexity of computing multilinear polynomials using depth four circuits in which the polynomial computed at every node has a bound on the individual degree of r ≥ 1 with respect to all its variables (referred to as multi- r -ic circuits). The goal of this study is to make progress towards proving superpolynomial lower bounds for general depth four circuits computing multilinear polynomials, by proving better bounds as the value of r increases. Recently, Kayal, Saha and Tavenas (Theory of Computing, 2018) showed that any depth four arithmetic circuit of bounded individual degree r computing an explicit multilinear polynomial on n O (1) variables and degree d must have size at least ( n / r 1.1 ) Ω(√ d / r ) . This bound, however, deteriorates as the value of r increases. It is a natural question to ask if we can prove a bound that does not deteriorate as the value of r increases, or a bound that holds for a larger regime of r . In this article, we prove a lower bound that does not deteriorate with increasing values of r , albeit for a specific instance of d = d ( n ) but for a wider range of r . Formally, for all large enough integers n and a small constant η, we show that there exists an explicit polynomial on n O (1) variables and degree Θ (log 2 n ) such that any depth four circuit of bounded individual degree r ≤ n η must have size at least exp(Ω(log 2 n )). This improvement is obtained by suitably adapting the complexity measure of Kayal et al. (Theory of Computing, 2018). This adaptation of the measure is inspired by the complexity measure used by Kayal et al. (SIAM J. Computing, 2017).


2020 ◽  
Vol 30 (1) ◽  
pp. 175-192
Author(s):  
NathanaËl Fijalkow

Abstract This paper studies the complexity of languages of finite words using automata theory. To go beyond the class of regular languages, we consider infinite automata and the notion of state complexity defined by Karp. Motivated by the seminal paper of Rabin from 1963 introducing probabilistic automata, we study the (deterministic) state complexity of probabilistic languages and prove that probabilistic languages can have arbitrarily high deterministic state complexity. We then look at alternating automata as introduced by Chandra, Kozen and Stockmeyer: such machines run independent computations on the word and gather their answers through boolean combinations. We devise a lower bound technique relying on boundedly generated lattices of languages, and give two applications of this technique. The first is a hierarchy theorem, stating that there are languages of arbitrarily high polynomial alternating state complexity, and the second is a linear lower bound on the alternating state complexity of the prime numbers written in binary. This second result strengthens a result of Hartmanis and Shank from 1968, which implies an exponentially worse lower bound for the same model.


Sign in / Sign up

Export Citation Format

Share Document