scholarly journals Clique Is Hard on Average for Regular Resolution

2021 ◽  
Vol 68 (4) ◽  
pp. 1-26
Author(s):  
Albert Atserias ◽  
Ilario Bonacina ◽  
Susanna F. De Rezende ◽  
Massimo Lauria ◽  
Jakob Nordström ◽  
...  

We prove that for k ≪ 4√ n regular resolution requires length n Ω( k ) to establish that an Erdős–Rényi graph with appropriately chosen edge density does not contain a k -clique. This lower bound is optimal up to the multiplicative constant in the exponent and also implies unconditional n Ω( k ) lower bounds on running time for several state-of-the-art algorithms for finding maximum cliques in graphs.

10.37236/6450 ◽  
2017 ◽  
Vol 24 (3) ◽  
Author(s):  
Andrei A. Bulatov ◽  
Olga Karpova ◽  
Arseny M. Shur ◽  
Konstantin Startsev

The words separation problem, originally formulated by Goralcik and Koubek (1986), is stated as follows. Let $Sep(n)$ be the minimum number such that for any two words of length $\le n$ there is a deterministic finite automaton with $Sep(n)$ states, accepting exactly one of them. The problem is to find the asymptotics of the function $Sep$. This problem is inverse to finding the asymptotics of the length of the shortest identity in full transformation semigroups $T_k$. The known lower bound on $Sep$ stems from the unary identity in $T_k$. We find the first series of identities in $T_k$ which are shorter than the corresponding unary identity for infinitely many values of $k$, and thus slightly improve the lower bound on $Sep(n)$. Then we present some short positive identities in symmetric groups, improving the lower bound on separating words by permutational automata by a multiplicative constant. Finally, we present the results of computer search for short identities for small $k$.


2019 ◽  
Vol 150 (3) ◽  
pp. 1401-1427
Author(s):  
Christian Elsholtz ◽  
Stefan Planitzer

AbstractWe prove new upper bounds for the number of representations of an arbitrary rational number as a sum of three unit fractions. In particular, for fixed m there are at most ${\cal O}_{\epsilon }(n^{{3}/{5}+\epsilon })$ solutions of ${m}/{n} = {1}/{a_1} + {1}/{a_2} + {1}/{a_3}$. This improves upon a result of Browning and Elsholtz (2011) and extends a result of Elsholtz and Tao (2013) who proved this when m=4 and n is a prime. Moreover, there exists an algorithm finding all solutions in expected running time ${\cal O}_{\epsilon }(n^{\epsilon }({n^3}/{m^2})^{{1}/{5}})$, for any $\epsilon \gt 0$. We also improve a bound on the maximum number of representations of a rational number as a sum of k unit fractions. Furthermore, we also improve lower bounds. In particular, we prove that for given $m \in {\open N}$ in every reduced residue class e mod f there exist infinitely many primes p such that the number of solutions of the equation ${m}/{p} = {1}/{a_1} + {1}/{a_2} + {1}/{a_3}$ is $\gg _{f,m} \exp (({5\log 2}/({12\,{\rm lcm} (m,f)}) + o_{f,m}(1)) {\log p}/{\log \log p})$. Previously, the best known lower bound of this type was of order $(\log p)^{0.549}$.


1994 ◽  
Vol 04 (01n02) ◽  
pp. 73-82 ◽  
Author(s):  
D. BHAGAVATHI ◽  
S. OLARIU ◽  
W. SHEN ◽  
L. WILSON

Given a sequence of m items α1, α2,…, αm from a semigroup S with an associative operation ⊕, the semigroup computation problem involves computing α1 ⊕ α2 ⊕…⊕ αm. We consider the semigroup computation problem involving m (2≤m≤n) items on a mesh with multiple broadcasting of size [Formula: see text]. Our contribution is to present the first lower bound and the first time-optimal algorithm which apply to the entire range of m (2≤m≤n). Specifically, we show that any algorithm that solves the semigroup computation problem must take Ω( log m) time if [Formula: see text] and [Formula: see text] time for [Formula: see text]. We then show that our bound is tight by designing an algorithm whose running time matches the lower bound. These results unify and generalize all semigroup lower bounds and algorithms known to the authors.


2001 ◽  
Vol 8 (1) ◽  
Author(s):  
Gerth Stølting Brodal ◽  
Rolf Fagerberg ◽  
Christian N. S. Pedersen ◽  
Anna Östlin

<p>We present tight upper and lower bounds for the problem of constructing evolutionary trees in the experiment model. We describe an algorithm which constructs an evolutionary tree of n species in time O(n d logd n) using at most n |d/2| (log2|d/2|−1 n + O(1)) experiments for d > 2, and<br />at most n(log n + O(1)) experiments for d = 2, where d is the degree of the tree. This improves the previous best upper bound by a factor Theta(log d). For d = 2 the previously best algorithm with running time O(n log n) had a bound of 4n log n on the number of experiments. By an explicit adversary argument, we show an <br />Omega(nd logd n) lower bound, matching our upper bounds and improving the previous best lower bound<br />by a factor Theta(logd n). Central to our algorithm is the construction and maintenance of separator trees of small height. We present how to maintain separator trees with height log n + O(1) under the insertion of new nodes in amortized time O(log n). Part of our dynamic algorithm is an algorithm for computing a centroid tree in optimal time O(n).</p><p>Keywords: Evolutionary trees, Experiment model, Separator trees, Centroid tree, Lower bounds</p>


10.37236/1188 ◽  
1994 ◽  
Vol 1 (1) ◽  
Author(s):  
Geoffrey Exoo

For $k \geq 5$, we establish new lower bounds on the Schur numbers $S(k)$ and on the k-color Ramsey numbers of $K_3$.


2021 ◽  
Vol 15 (6) ◽  
pp. 1-27
Author(s):  
Marco Bressan ◽  
Stefano Leucci ◽  
Alessandro Panconesi

We address the problem of computing the distribution of induced connected subgraphs, aka graphlets or motifs , in large graphs. The current state-of-the-art algorithms estimate the motif counts via uniform sampling by leveraging the color coding technique by Alon, Yuster, and Zwick. In this work, we extend the applicability of this approach by introducing a set of algorithmic optimizations and techniques that reduce the running time and space usage of color coding and improve the accuracy of the counts. To this end, we first show how to optimize color coding to efficiently build a compact table of a representative subsample of all graphlets in the input graph. For 8-node motifs, we can build such a table in one hour for a graph with 65M nodes and 1.8B edges, which is times larger than the state of the art. We then introduce a novel adaptive sampling scheme that breaks the “additive error barrier” of uniform sampling, guaranteeing multiplicative approximations instead of just additive ones. This allows us to count not only the most frequent motifs, but also extremely rare ones. For instance, on one graph we accurately count nearly 10.000 distinct 8-node motifs whose relative frequency is so small that uniform sampling would literally take centuries to find them. Our results show that color coding is still the most promising approach to scalable motif counting.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 164
Author(s):  
Tobias Rupp ◽  
Stefan Funke

We prove a Ω(n) lower bound on the query time for contraction hierarchies (CH) as well as hub labels, two popular speed-up techniques for shortest path routing. Our construction is based on a graph family not too far from subgraphs that occur in real-world road networks, in particular, it is planar and has a bounded degree. Additionally, we borrow ideas from our lower bound proof to come up with instance-based lower bounds for concrete road network instances of moderate size, reaching up to 96% of an upper bound given by a constructed CH. For a variant of our instance-based schema applied to some special graph classes, we can even show matching upper and lower bounds.


2021 ◽  
Vol 15 (5) ◽  
pp. 1-32
Author(s):  
Quang-huy Duong ◽  
Heri Ramampiaro ◽  
Kjetil Nørvåg ◽  
Thu-lan Dam

Dense subregion (subgraph & subtensor) detection is a well-studied area, with a wide range of applications, and numerous efficient approaches and algorithms have been proposed. Approximation approaches are commonly used for detecting dense subregions due to the complexity of the exact methods. Existing algorithms are generally efficient for dense subtensor and subgraph detection, and can perform well in many applications. However, most of the existing works utilize the state-or-the-art greedy 2-approximation algorithm to capably provide solutions with a loose theoretical density guarantee. The main drawback of most of these algorithms is that they can estimate only one subtensor, or subgraph, at a time, with a low guarantee on its density. While some methods can, on the other hand, estimate multiple subtensors, they can give a guarantee on the density with respect to the input tensor for the first estimated subsensor only. We address these drawbacks by providing both theoretical and practical solution for estimating multiple dense subtensors in tensor data and giving a higher lower bound of the density. In particular, we guarantee and prove a higher bound of the lower-bound density of the estimated subgraph and subtensors. We also propose a novel approach to show that there are multiple dense subtensors with a guarantee on its density that is greater than the lower bound used in the state-of-the-art algorithms. We evaluate our approach with extensive experiments on several real-world datasets, which demonstrates its efficiency and feasibility.


2021 ◽  
Vol 13 (3) ◽  
pp. 1-21
Author(s):  
Suryajith Chillara

In this article, we are interested in understanding the complexity of computing multilinear polynomials using depth four circuits in which the polynomial computed at every node has a bound on the individual degree of r ≥ 1 with respect to all its variables (referred to as multi- r -ic circuits). The goal of this study is to make progress towards proving superpolynomial lower bounds for general depth four circuits computing multilinear polynomials, by proving better bounds as the value of r increases. Recently, Kayal, Saha and Tavenas (Theory of Computing, 2018) showed that any depth four arithmetic circuit of bounded individual degree r computing an explicit multilinear polynomial on n O (1) variables and degree d must have size at least ( n / r 1.1 ) Ω(√ d / r ) . This bound, however, deteriorates as the value of r increases. It is a natural question to ask if we can prove a bound that does not deteriorate as the value of r increases, or a bound that holds for a larger regime of r . In this article, we prove a lower bound that does not deteriorate with increasing values of r , albeit for a specific instance of d = d ( n ) but for a wider range of r . Formally, for all large enough integers n and a small constant η, we show that there exists an explicit polynomial on n O (1) variables and degree Θ (log 2 n ) such that any depth four circuit of bounded individual degree r ≤ n η must have size at least exp(Ω(log 2 n )). This improvement is obtained by suitably adapting the complexity measure of Kayal et al. (Theory of Computing, 2018). This adaptation of the measure is inspired by the complexity measure used by Kayal et al. (SIAM J. Computing, 2017).


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bartosz Regula ◽  
Ryuji Takagi

AbstractQuantum channels underlie the dynamics of quantum systems, but in many practical settings it is the channels themselves that require processing. We establish universal limitations on the processing of both quantum states and channels, expressed in the form of no-go theorems and quantitative bounds for the manipulation of general quantum channel resources under the most general transformation protocols. Focusing on the class of distillation tasks — which can be understood either as the purification of noisy channels into unitary ones, or the extraction of state-based resources from channels — we develop fundamental restrictions on the error incurred in such transformations, and comprehensive lower bounds for the overhead of any distillation protocol. In the asymptotic setting, our results yield broadly applicable bounds for rates of distillation. We demonstrate our results through applications to fault-tolerant quantum computation, where we obtain state-of-the-art lower bounds for the overhead cost of magic state distillation, as well as to quantum communication, where we recover a number of strong converse bounds for quantum channel capacity.


Sign in / Sign up

Export Citation Format

Share Document