signed network
Recently Published Documents


TOTAL DOCUMENTS

80
(FIVE YEARS 46)

H-INDEX

10
(FIVE YEARS 3)

2021 ◽  
Vol 411 ◽  
pp. 126520
Author(s):  
Bo Liu ◽  
Housheng Su ◽  
Licheng Wu ◽  
Xixi Shen

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samin Aref ◽  
Zachary P. Neal

AbstractIn network science, identifying optimal partitions of a signed network into internally cohesive and mutually divisive clusters based on generalized balance theory is computationally challenging. We reformulate and generalize two binary linear programming models that tackle this challenge, demonstrating their practicality by applying them to partition signed networks of collaboration and opposition in the US House of Representatives. These models guarantee a globally optimal network partition and can be practically applied to signed networks containing up to 30,000 edges. In the US House context, we find that a three-cluster partition is better than a conventional two-cluster partition, where the otherwise hidden third coalition is composed of highly effective legislators who are ideologically aligned with the majority party.


Author(s):  
Lucas Rusnak ◽  
Jelena Tešić

AbstractAttitudinal network graphs are signed graphs where edges capture an expressed opinion; two vertices connected by an edge can be agreeable (positive) or antagonistic (negative). A signed graph is called balanced if each of its cycles includes an even number of negative edges. Balance is often characterized by the frustration index or by finding a single convergent balanced state of network consensus. In this paper, we propose to expand the measures of consensus from a single balanced state associated with the frustration index to the set of nearest balanced states. We introduce the frustration cloud as a set of all nearest balanced states and use a graph-balancing algorithm to find all nearest balanced states in a deterministic way. Computational concerns are addressed by measuring consensus probabilistically, and we introduce new vertex and edge metrics to quantify status, agreement, and influence. We also introduce a new global measure of controversy for a given signed graph and show that vertex status is a zero-sum game in the signed network. We propose an efficient scalable algorithm for calculating frustration cloud-based measures in social network and survey data of up to 80,000 vertices and half-a-million edges. We also demonstrate the power of the proposed approach to provide discriminant features for community discovery when compared to spectral clustering and to automatically identify dominant vertices and anomalous decisions in the network.


2021 ◽  
Author(s):  
Ranjana Roy Chowdhury ◽  
Shivam Gupta ◽  
Sravanthi Chede

Abstract In the recent period of time with a lot of social platforms emerging, the relationships among various units can be framed with respect to either positive, negative or no relation. These units can be individuals, countries or others that form the basic structural component of a signed network. These signed networks picture a dynamic characteristic of the graph so formed allowing only few combinations of signs that brings the structural balance theorem in picture. Structural balance theory affirms that signed social networks tend to be organized so as to avoid conflictual situations, corresponding to cycles of unstable relations. The aim of structural balance in networks is to find proper partitions of nodes that guarantee equilibrium in the system allowing only few combination triangles with signed edges to be permitted in graph. Most of the works in this field of networking have either explained the importance of signed graph or have applied the balance theorem and tried to solve problems. Following the recent time trends with each nation emerging to be superior and competing to be the best, the probable doubt of happening of WW-III(World War-III) comes into every individuals mind. Nevertheless, our paper aims at answering some of the interesting questions on World War-III. In this project we have worked with the creation of a signed graph picturing the World War-III participating countries as nodes and have predicted the best possible coalition of countries that will be formed during war. Also, we have visually depicted the number of communities that will be formed in this war and the participating countries in each communities. Our paper involves extensive analysis on the various parameters influencing the above predictions and also creation of a new data-set of World War -III that contains the pairwise relationship data of countries with various parameters influencing prediction. This paper also validates and analyses the predicted result.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0256696
Author(s):  
Anna Keuchenius ◽  
Petter Törnberg ◽  
Justus Uitermark

Despite the prevalence of disagreement between users on social media platforms, studies of online debates typically only look at positive online interactions, represented as networks with positive ties. In this paper, we hypothesize that the systematic neglect of conflict that these network analyses induce leads to misleading results on polarized debates. We introduce an approach to bring in negative user-to-user interaction, by analyzing online debates using signed networks with positive and negative ties. We apply this approach to the Dutch Twitter debate on ‘Black Pete’—an annual Dutch celebration with racist characteristics. Using a dataset of 430,000 tweets, we apply natural language processing and machine learning to identify: (i) users’ stance in the debate; and (ii) whether the interaction between users is positive (supportive) or negative (antagonistic). Comparing the resulting signed network with its unsigned counterpart, the retweet network, we find that traditional unsigned approaches distort debates by conflating conflict with indifference, and that the inclusion of negative ties changes and enriches our understanding of coalitions and division within the debate. Our analysis reveals that some groups are attacking each other, while others rather seem to be located in fragmented Twitter spaces. Our approach identifies new network positions of individuals that correspond to roles in the debate, such as leaders and scapegoats. These findings show that representing the polarity of user interactions as signs of ties in networks substantively changes the conclusions drawn from polarized social media activity, which has important implications for various fields studying online debates using network analysis.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 799
Author(s):  
Zhijie Xiang ◽  
Weijia Gong ◽  
Zehui Li ◽  
Xue Yang ◽  
Jihua Wang ◽  
...  

Protein–protein interactions (PPIs) play a key role in signal transduction and pharmacogenomics, and hence, accurate PPI prediction is crucial. Graph structures have received increasing attention owing to their outstanding performance in machine learning. In practice, PPIs can be expressed as a signed network (i.e., graph structure), wherein the nodes in the network represent proteins, and edges represent the interactions (positive or negative effects) of protein nodes. PPI predictions can be realized by predicting the links of the signed network; therefore, the use of gated graph attention for signed networks (SN-GGAT) is proposed herein. First, the concept of graph attention network (GAT) is applied to signed networks, in which “attention” represents the weight of neighbor nodes, and GAT updates the node features through the weighted aggregation of neighbor nodes. Then, the gating mechanism is defined and combined with the balance theory to obtain the high-order relations of protein nodes to improve the attention effect, making the attention mechanism follow the principle of “low-order high attention, high-order low attention, different signs opposite”. PPIs are subsequently predicted on the Saccharomyces cerevisiae core dataset and the Human dataset. The test results demonstrate that the proposed method exhibits strong competitiveness.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Matúš Medo ◽  
Manuel S. Mariani ◽  
Linyuan Lü

AbstractHow does the complexity of the world around us affect the reliability of our opinions? Motivated by this question, we quantitatively study an opinion formation mechanism whereby an uninformed observer gradually forms opinions about a world composed of subjects interrelated by a signed network of mutual trust and distrust. We show numerically and analytically that the observer’s resulting opinions are highly inconsistent (they tend to be independent of the observer’s initial opinions) and unstable (they exhibit wide stochastic variations). Opinion inconsistency and instability increase with the world’s complexity, intended as the number of subjects and their interactions. This increase can be prevented by suitably expanding the observer’s initial amount of information. Our findings imply that an individual who initially trusts a few credible information sources may end up trusting the deceptive ones even if only a small number of trust relations exist between the credible and deceptive sources.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Angela Fontan ◽  
Claudio Altafini

AbstractIn parliamentary democracies, government negotiations talks following a general election can sometimes be a long and laborious process. In order to explain this phenomenon, in this paper we use structural balance theory to represent a multiparty parliament as a signed network, with edge signs representing alliances and rivalries among parties. We show that the notion of frustration, which quantifies the amount of “disorder” encoded in the signed graph, correlates very well with the duration of the government negotiation talks. For the 29 European countries considered in this study, the average correlation between frustration and government negotiation talks ranges between 0.42 and 0.69, depending on what information is included in the edges of the signed network. Dynamical models of collective decision-making over signed networks with varying frustration are proposed to explain this correlation.


Sign in / Sign up

Export Citation Format

Share Document