scholarly journals Improved Bounds for Induced Poset Saturation

10.37236/8949 ◽  
2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Ryan R. Martin ◽  
Heather C. Smith ◽  
Shanise Walker

Given a finite poset $\mathcal{P}$, a family $\mathcal{F}$ of elements in the Boolean lattice is induced-$\mathcal{P}$-saturated if $\mathcal{F}$ contains no copy of $\mathcal{P}$ as an induced subposet but every proper superset of $\mathcal{F}$ contains a copy of $\mathcal{P}$ as an induced subposet.  The minimum size of an induced-$\mathcal{P}$-saturated family in the $n$-dimensional Boolean lattice, denoted $\mathrm{sat}^*(n,\mathcal{P})$, was first studied by Ferrara et al. (2017). Our work focuses on strengthening lower bounds. For the 4-point poset known as the diamond, we prove $\mathrm{sat}^*(n,\Diamond)\geq\sqrt{n}$, improving upon a logarithmic lower bound. For the antichain with $k+1$ elements, we prove $$\mathrm{sat}^*(n,\mathcal{A}_{k+1})\geq \left(1-\frac{1}{\log_2k}\right)\frac{kn}{\log_2 k}$$ for $n$ sufficiently large, improving upon a lower bound of $3n-1$ for $k\geq 3$. 

10.37236/6026 ◽  
2019 ◽  
Vol 26 (4) ◽  
Author(s):  
Sándor Bozóki ◽  
Péter Gál ◽  
István Marosi ◽  
William D. Weakley

The queens graph $Q_{m \times n}$ has the squares of the $m \times n$ chessboard as its vertices; two squares are adjacent if they are in the same row, column, or diagonal of the board. A set $D$ of squares of $Q_{m \times n}$ is a dominating set for $Q_{m \times n}$ if every square of $Q_{m \times n}$ is either in $D$ or adjacent to a square in $D$. The minimum size of a dominating set of $Q_{m \times n}$ is the domination number, denoted by $\gamma(Q_{m \times n})$. Values of $\gamma(Q_{m \times n}), \, 4 \leq m \leq n \leq 18,\,$ are given here, in each case with a file of minimum dominating sets (often all of them, up to symmetry) in an online appendix. In these ranges for $m$ and $n$, monotonicity fails once: $\gamma(Q_{8\times 11}) = 6 > 5 = \gamma(Q_{9 \times 11}) = \gamma(Q_{10 \times 11}) = \gamma(Q_{11 \times 11})$. Let $g(m)$ [respectively $g^{*}(m)$] be the largest integer such that $m$ queens suffice to dominate the $(m+1) \times g(m)$ board [respectively, to dominate the $(m+1) \times g^{*}(m)$ board with no two queens in a row]. Starting from the elementary bound $g(m) \leq 3m$, domination when the board is far from square is investigated. It is shown (Theorem 2) that $g(m) = 3m$ can only occur when $m \equiv 0, 1, 2, 3, \mbox{or } 4 \mbox{ (mod 9)}$, with an online appendix showing that this does occur for $m \leq 40, m \neq 3$. Also (Theorem 4), if $m \equiv 5, 6, \mbox{or } 7 \mbox{ (mod 9)}$ then $g^{*}(m) \leq 3m-2$, and if $m \equiv 8 \mbox{ (mod 9)}$ then $g^{*}(m) \leq 3m-4$. It is shown that equality holds in these bounds for $m \leq 40 $. Lower bounds on $\gamma(Q_{m \times n})$ are given. In particular, if $m \leq n$ then $\gamma(Q_{m \times n}) \geq \min \{ m,\lceil (m+n-2)/4 \rceil \}$. Two types of dominating sets (orthodox covers and centrally strong sets) are developed; each type is shown to give good upper bounds of $\gamma(Q_{m \times n})$ in several cases. Three questions are posed: whether monotonicity of $\gamma(Q_{m \times n})$ holds (other than from $(m, n) = (8, 11)$ to $(9, 11)$), whether $\gamma(Q_{m \times n}) = (m+n-2)/4$ occurs with $m \leq n < 3m+2$ (other than for $(m, n) = (3, 3)$ and $(11, 11)$), and whether the lower bound given above can be improved. A set of squares is independent if no two of its squares are adjacent. The minimum size of an independent dominating set of $Q_{m \times n}$ is the independent domination number, denoted by $i(Q_{m \times n})$. Values of $i(Q_{m \times n}), \, 4 \leq m \leq n \leq 18, \,$ are given here, in each case with some minimum dominating sets. In these ranges for $m$ and $n$, monotonicity fails twice: $i(Q_{8\times 11}) = 6 > 5 = i(Q_{9 \times 11}) = i(Q_{10 \times 11}) = i(Q_{11 \times 11})$, and $i(Q_{11 \times 18}) = 9 > 8 = i(Q_{12\times 18})$.


10.37236/1188 ◽  
1994 ◽  
Vol 1 (1) ◽  
Author(s):  
Geoffrey Exoo

For $k \geq 5$, we establish new lower bounds on the Schur numbers $S(k)$ and on the k-color Ramsey numbers of $K_3$.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 164
Author(s):  
Tobias Rupp ◽  
Stefan Funke

We prove a Ω(n) lower bound on the query time for contraction hierarchies (CH) as well as hub labels, two popular speed-up techniques for shortest path routing. Our construction is based on a graph family not too far from subgraphs that occur in real-world road networks, in particular, it is planar and has a bounded degree. Additionally, we borrow ideas from our lower bound proof to come up with instance-based lower bounds for concrete road network instances of moderate size, reaching up to 96% of an upper bound given by a constructed CH. For a variant of our instance-based schema applied to some special graph classes, we can even show matching upper and lower bounds.


2021 ◽  
Vol 13 (3) ◽  
pp. 1-21
Author(s):  
Suryajith Chillara

In this article, we are interested in understanding the complexity of computing multilinear polynomials using depth four circuits in which the polynomial computed at every node has a bound on the individual degree of r ≥ 1 with respect to all its variables (referred to as multi- r -ic circuits). The goal of this study is to make progress towards proving superpolynomial lower bounds for general depth four circuits computing multilinear polynomials, by proving better bounds as the value of r increases. Recently, Kayal, Saha and Tavenas (Theory of Computing, 2018) showed that any depth four arithmetic circuit of bounded individual degree r computing an explicit multilinear polynomial on n O (1) variables and degree d must have size at least ( n / r 1.1 ) Ω(√ d / r ) . This bound, however, deteriorates as the value of r increases. It is a natural question to ask if we can prove a bound that does not deteriorate as the value of r increases, or a bound that holds for a larger regime of r . In this article, we prove a lower bound that does not deteriorate with increasing values of r , albeit for a specific instance of d = d ( n ) but for a wider range of r . Formally, for all large enough integers n and a small constant η, we show that there exists an explicit polynomial on n O (1) variables and degree Θ (log 2 n ) such that any depth four circuit of bounded individual degree r ≤ n η must have size at least exp(Ω(log 2 n )). This improvement is obtained by suitably adapting the complexity measure of Kayal et al. (Theory of Computing, 2018). This adaptation of the measure is inspired by the complexity measure used by Kayal et al. (SIAM J. Computing, 2017).


2020 ◽  
Vol 30 (1) ◽  
pp. 175-192
Author(s):  
NathanaËl Fijalkow

Abstract This paper studies the complexity of languages of finite words using automata theory. To go beyond the class of regular languages, we consider infinite automata and the notion of state complexity defined by Karp. Motivated by the seminal paper of Rabin from 1963 introducing probabilistic automata, we study the (deterministic) state complexity of probabilistic languages and prove that probabilistic languages can have arbitrarily high deterministic state complexity. We then look at alternating automata as introduced by Chandra, Kozen and Stockmeyer: such machines run independent computations on the word and gather their answers through boolean combinations. We devise a lower bound technique relying on boundedly generated lattices of languages, and give two applications of this technique. The first is a hierarchy theorem, stating that there are languages of arbitrarily high polynomial alternating state complexity, and the second is a linear lower bound on the alternating state complexity of the prime numbers written in binary. This second result strengthens a result of Hartmanis and Shank from 1968, which implies an exponentially worse lower bound for the same model.


Algorithmica ◽  
2021 ◽  
Author(s):  
Seungbum Jo ◽  
Rahul Lingala ◽  
Srinivasa Rao Satti

AbstractWe consider the problem of encoding two-dimensional arrays, whose elements come from a total order, for answering $${\text{Top-}}{k}$$ Top- k queries. The aim is to obtain encodings that use space close to the information-theoretic lower bound, which can be constructed efficiently. For an $$m \times n$$ m × n array, with $$m \le n$$ m ≤ n , we first propose an encoding for answering 1-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, whose query range is restricted to $$[1 \dots m][1 \dots a]$$ [ 1 ⋯ m ] [ 1 ⋯ a ] , for $$1 \le a \le n$$ 1 ≤ a ≤ n . Next, we propose an encoding for answering for the general (4-sided) $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries that takes $$(m\lg {{(k+1)n \atopwithdelims ()n}}+2nm(m-1)+o(n))$$ ( m lg ( k + 1 ) n n + 2 n m ( m - 1 ) + o ( n ) ) bits, which generalizes the joint Cartesian tree of Golin et al. [TCS 2016]. Compared with trivial $$O(nm\lg {n})$$ O ( n m lg n ) -bit encoding, our encoding takes less space when $$m = o(\lg {n})$$ m = o ( lg n ) . In addition to the upper bound results for the encodings, we also give lower bounds on encodings for answering 1 and 4-sided $${\textsf {Top}}{\text {-}}k{}$$ Top - k queries, which show that our upper bound results are almost optimal.


1970 ◽  
Vol 37 (2) ◽  
pp. 267-270 ◽  
Author(s):  
D. Pnueli

A method is presented to obtain both upper and lower bound to eigenvalues when a variational formulation of the problem exists. The method consists of a systematic shift in the weight function. A detailed procedure is offered for one-dimensional problems, which makes improvement of the bounds possible, and which involves the same order of detailed computation as the Rayleigh-Ritz method. The main contribution of this method is that it yields the “other bound;” i.e., the one which cannot be obtained by the Rayleigh-Ritz method.


1987 ◽  
Vol 30 (2) ◽  
pp. 193-199 ◽  
Author(s):  
J. A. Bondy ◽  
Glenn Hopkins ◽  
William Staton

AbstractIf G is a connected cubic graph with ρ vertices, ρ > 4, then G has a vertex-induced forest containing at least (5ρ - 2)/8 vertices. In case G is triangle-free, the lower bound is improved to (2ρ — l)/3. Examples are given to show that no such lower bound is possible for vertex-induced trees.


10.37236/422 ◽  
2010 ◽  
Vol 17 (1) ◽  
Author(s):  
Yichao Chen

CF-graphs form a class of multigraphs that contains all simple graphs. We prove a lower bound for the average genus of a CF-graph which is a linear function of its Betti number. A lower bound for average genus in terms of the maximum genus and some structure theorems for graphs with a given average genus are also provided.


10.37236/93 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Guy Wolfovitz

We consider the next random process for generating a maximal $H$-free graph: Given a fixed graph $H$ and an integer $n$, start by taking a uniformly random permutation of the edges of the complete $n$-vertex graph $K_n$. Then, traverse the edges of $K_n$ according to the order imposed by the permutation and add each traversed edge to an (initially empty) evolving $n$-vertex graph - unless its addition creates a copy of $H$. The result of this process is a maximal $H$-free graph ${\Bbb M}_n(H)$. Our main result is a new lower bound on the expected number of edges in ${\Bbb M}_n(H)$, for $H$ that is regular, strictly $2$-balanced. As a corollary, we obtain new lower bounds for Turán numbers of complete, balanced bipartite graphs. Namely, for fixed $r \ge 5$, we show that ex$(n, K_{r,r}) = \Omega(n^{2-2/(r+1)}(\ln\ln n)^{1/(r^2-1)})$. This improves an old lower bound of Erdős and Spencer. Our result relies on giving a non-trivial lower bound on the probability that a given edge is included in ${\Bbb M}_n(H)$, conditioned on the event that the edge is traversed relatively (but not trivially) early during the process.


Sign in / Sign up

Export Citation Format

Share Document