Robot-assisted pedicle screw insertion for scoliosis: first 14 cases in China

2015 ◽  
Vol 36 (11) ◽  
pp. 1161
Author(s):  
Xiao ZHAI ◽  
Zi-qiang CHEN ◽  
Ming-yuan YANG ◽  
Ying-chuan ZHAO ◽  
Hai-jian NI ◽  
...  
2022 ◽  
Vol 52 (1) ◽  
pp. E8

OBJECTIVE Pedicle screw insertion for stabilization after lumbar fusion surgery is commonly performed by spine surgeons. With the advent of navigation technology, the accuracy of pedicle screw insertion has increased. Robotic guidance has revolutionized the placement of pedicle screws with 2 distinct radiographic registration methods, the scan-and-plan method and CT-to-fluoroscopy method. In this study, the authors aimed to compare the accuracy and safety of these methods. METHODS A retrospective chart review was conducted at 2 centers to obtain operative data for consecutive patients who underwent robot-assisted lumbar pedicle screw placement. The newest robotic platform (Mazor X Robotic System) was used in all cases. One center used the scan-and-plan registration method, and the other used CT-to-fluoroscopy for registration. Screw accuracy was determined by applying the Gertzbein-Robbins scale. Fluoroscopic exposure times were collected from radiology reports. RESULTS Overall, 268 patients underwent pedicle screw insertion, 126 patients with scan-and-plan registration and 142 with CT-to-fluoroscopy registration. In the scan-and-plan cohort, 450 screws were inserted across 266 spinal levels (mean 1.7 ± 1.1 screws/level), with 446 (99.1%) screws classified as Gertzbein-Robbins grade A (within the pedicle) and 4 (0.9%) as grade B (< 2-mm deviation). In the CT-to-fluoroscopy cohort, 574 screws were inserted across 280 lumbar spinal levels (mean 2.05 ± 1.7 screws/ level), with 563 (98.1%) grade A screws and 11 (1.9%) grade B (p = 0.17). The scan-and-plan cohort had nonsignificantly less fluoroscopic exposure per screw than the CT-to-fluoroscopy cohort (12 ± 13 seconds vs 11.1 ± 7 seconds, p = 0.3). CONCLUSIONS Both scan-and-plan registration and CT-to-fluoroscopy registration methods were safe, accurate, and had similar fluoroscopy time exposure overall.


PLoS ONE ◽  
2014 ◽  
Vol 9 (1) ◽  
pp. e86346 ◽  
Author(s):  
Wei Tian ◽  
Xiaoguang Han ◽  
Bo Liu ◽  
Yajun Liu ◽  
Ying Hu ◽  
...  

2020 ◽  
Vol 9 (10) ◽  
pp. 653-666
Author(s):  
Weishang Li ◽  
Gaoyu Li ◽  
Wenting Chen ◽  
Lin Cong

Aims The aim of this study was to systematically compare the safety and accuracy of robot-assisted (RA) technique with conventional freehand with/without fluoroscopy-assisted (CT) pedicle screw insertion for spine disease. Methods A systematic search was performed on PubMed, EMBASE, the Cochrane Library, MEDLINE, China National Knowledge Infrastructure (CNKI), and WANFANG for randomized controlled trials (RCTs) that investigated the safety and accuracy of RA compared with conventional freehand with/without fluoroscopy-assisted pedicle screw insertion for spine disease from 2012 to 2019. This meta-analysis used Mantel-Haenszel or inverse variance method with mixed-effects model for heterogeneity, calculating the odds ratio (OR), mean difference (MD), standardized mean difference (SMD), and 95% confidence intervals (CIs). The results of heterogeneity, subgroup analysis, and risk of bias were analyzed. Results Ten RCTs with 713 patients and 3,331 pedicle screws were included. Compared with CT, the accuracy rate of RA was superior in Grade A with statistical significance and Grade A + B without statistical significance. Compared with CT, the operating time of RA was longer. The difference between RA and CT was statistically significant in radiation dose. Proximal facet joint violation occurred less in RA than in CT. The postoperative Oswestry Disability Index (ODI) of RA was smaller than that of CT, and there were some interesting outcomes in our subgroup analysis. Conclusion RA technique could be viewed as an accurate and safe pedicle screw implantation method compared to CT. A robotic system equipped with optical intraoperative navigation is superior to CT in accuracy. RA pedicle screw insertion can improve accuracy and maintain stability for some challenging areas. Cite this article: Bone Joint Res 2020;9(10):653–666.


2019 ◽  
Vol 18 (5) ◽  
pp. E171-E171
Author(s):  
Justice O Agyei ◽  
Asham Khan ◽  
Patrick K Jowdy ◽  
Timothy E O’Connor ◽  
Joshua E Meyers ◽  
...  

Abstract Robot-assisted pedicle screw insertion has been slowly gaining popularity in the spine surgery community. In previous studies, robotics has been shown to increase accuracy and reduce complication rates compared to other navigation technologies, although those studies have been conducted using traditional trajectories for pedicle screw insertion. We present a surgical video in which a robotics system (Mazor X; Mazor Robotics Ltd, Caesarea, Israel) was used to create cortical bone trajectories for the insertion of the screws. The patient in this case is a 52-yr-old woman with severe L4-5 disc herniation requiring a transforaminal interbody fusion with the insertion of pedicle screws. The robotic system's scan-and-plan technique was utilized, in which an intraoperative computed tomography (CT) scan generates a real-time operative plan. Other techniques for inserting pedicle screws using cortical bone trajectories include CT navigation and fluoroscopic guidance. These techniques allow the surgeon to manually direct the screw under precise guidance in multiple planes, although the surgeon is still using all 6 degrees of freedom the human hand provides. With robotic guidance, a pilot hole is drilled, which eliminates 4 of 6 degrees of freedom, which can potentially reduce the risk of misplaced screws. To our knowledge, this is the first video demonstrating pedicle screw insertion through cortical bone trajectories using robotic guidance. Future studies are warranted to compare cortical bone trajectory insertion using different navigation techniques to determine the long-term efficacy of each technique. The patient gave informed consent for surgery and video recording. Institutional review board approval was deemed unnecessary.


2019 ◽  
Vol 31 (1) ◽  
pp. 139-146 ◽  
Author(s):  
Camilo A. Molina ◽  
Nicholas Theodore ◽  
A. Karim Ahmed ◽  
Erick M. Westbroek ◽  
Yigal Mirovsky ◽  
...  

OBJECTIVEAugmented reality (AR) is a novel technology that has the potential to increase the technical feasibility, accuracy, and safety of conventional manual and robotic computer-navigated pedicle insertion methods. Visual data are directly projected to the operator’s retina and overlaid onto the surgical field, thereby removing the requirement to shift attention to a remote display. The objective of this study was to assess the comparative accuracy of AR-assisted pedicle screw insertion in comparison to conventional pedicle screw insertion methods.METHODSFive cadaveric male torsos were instrumented bilaterally from T6 to L5 for a total of 120 inserted pedicle screws. Postprocedural CT scans were obtained, and screw insertion accuracy was graded by 2 independent neuroradiologists using both the Gertzbein scale (GS) and a combination of that scale and the Heary classification, referred to in this paper as the Heary-Gertzbein scale (HGS). Non-inferiority analysis was performed, comparing the accuracy to freehand, manual computer-navigated, and robotics-assisted computer-navigated insertion accuracy rates reported in the literature. User experience analysis was conducted via a user experience questionnaire filled out by operators after the procedures.RESULTSThe overall screw placement accuracy achieved with the AR system was 96.7% based on the HGS and 94.6% based on the GS. Insertion accuracy was non-inferior to accuracy reported for manual computer-navigated pedicle insertion based on both the GS and the HGS scores. When compared to accuracy reported for robotics-assisted computer-navigated insertion, accuracy achieved with the AR system was found to be non-inferior when assessed with the GS, but superior when assessed with the HGS. Last, accuracy results achieved with the AR system were found to be superior to results obtained with freehand insertion based on both the HGS and the GS scores. Accuracy results were not found to be inferior in any comparison. User experience analysis yielded “excellent” usability classification.CONCLUSIONSAR-assisted pedicle screw insertion is a technically feasible and accurate insertion method.


Sign in / Sign up

Export Citation Format

Share Document