Antioxidant activity of Cat’s whiskers flavonoid on some reactive oxygen and nitrogen species generating inflamma-tory cells is mediated by scavenging of free radicals

2013 ◽  
Vol 10 (5) ◽  
pp. 321-327
Author(s):  
Bala Asis
2021 ◽  
Author(s):  
Harnavi Harun

Kidney is one of the tissues affected by age that involves cellular and structural changes inside the kidney and notably implicates with comorbidity, related to cardiovascular disease aging. Aging kidney causes the elderly susceptible to clinical deterioration from ordinary stimulation that younger individual can compensate, including acute renal injury, volume depletion or overload, sodium and potassium level disorders, and toxic reaction against kidney excreted drugs. As one of the organs with the fastest aging rate, kidney shows several age-related decline in both structural and functional with 30% of the glomerulus are damaged and represent diffuse glomerular sclerosis by age 75 and explain why the prevalence of chronic kidney disease (CKD) and end-stage renal disease are very common in the elderly. The cross-sectional population-based study by The National Health and Nutrition Examination Survey supports the theory of age-related decline in kidney function, although some other subjects did not have an absolute decline in kidney function. The underlying molecular mechanisms could be the target of future therapeutic strategies. Aging is a natural biological process characterized by a gradual decline in cellular function as well as progressive structural change of organ systems. In aging kidney, there are interactions of genetic factors, environmental changes, and cellular dysfunction that lead to the typical structural and functional changes. One of the most popular theory of aging is the theory of free radicals or oxidative stress based on the fact that cells are under chronic oxidative stress due to an imbalance between pro oxidants and antioxidants. Reactive oxygen species are oxygen-derived oxidizing compounds that are highly reactive, consisting of free radicals and non-radicals. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) refer to both reactive radicals and non-radical derivatives of oxygen and nitrogen. Reactive oxygen and nitrogen species (RONS) are produced by all aerobic cells and play an important role in aging as well as age-related diseases. Lipid peroxidation is a process of oxidative degradation of lipids that process by which free radicals bind to lipid electrons in the cell membrane resulting in direct cell damage. Lipid peroxidation can cause cellular damage in several ways such as impairing the integrity of the plasma membrane and subcellular organelles by peroxidation, “chain reaction” of ROS production, and activation of phospholipase A2 (PLA2) caused by lipid peroxidation. Fatty acids and other PLA2 metabolites (such as lysophospholipids) are known to damage cell membranes. In the development of kidney damage, the process of lipid peroxidation plays an important role. This is presumably due to the large number of long-chain polyunsaturated fatty acids (PUFAs) in the lipid composition of the kidneys and there are substantial evidence to suggest that ROS is involved in the ischemic, toxic, and immunologically mediated pathogenesis of renal injury, but the cellular mechanisms that result in cell injury and death are still being studied.


RSC Advances ◽  
2015 ◽  
Vol 5 (35) ◽  
pp. 27986-28006 ◽  
Author(s):  
Satish Balasaheb Nimse ◽  
Dilipkumar Pal

The normal biochemical reactions in our body, increased exposure to the environment, and higher levels of dietary xenobiotic's result in the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS).


2017 ◽  
Vol 5 (1) ◽  
pp. 28
Author(s):  
Muhammad Torequl Islam

Nowadays, we are very much concerned about the physiological contributions of oxidative species (e.g. - free radicals, reactive species). These include reactive oxygen/nitrogen species (ROS/RNS), vastly under continuous study in the medical concerns, emphasized on normal physiological as well as pathophysiological conditions. Being oxidizer, they have enforced us to search substances or conditions capability to counteract them, called the reducers. Doubtless, redox reaction has numerous roles in a biological system; despite we badly count the effects of ROS. This paper depicts some important interactions related to the reduction effects on the biological systems.


2006 ◽  
Vol 14 (13) ◽  
pp. 4568-4577 ◽  
Author(s):  
Ana Gomes ◽  
David Costa ◽  
José L.F.C. Lima ◽  
Eduarda Fernandes

2021 ◽  
Vol 28 ◽  
Author(s):  
Francisca Rivas ◽  
Carlos Poblete-Aro ◽  
María Elsa Pando ◽  
María José Allel ◽  
Valentina Fernandez ◽  
...  

: Aging is defined as the functional loss of tissues and organs over time. This is a biological, irreversible, progressive, and universal process that results from genetic and environmental factors, such as diet, physical activity, smoking, harmful alcohol consumption, and exposure to toxins, among others. Aging is a consequence of molecular and cellular damage built up over time. This damage begins with a gradual decrease in physical and mental capacity, thus increasing the risk of neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease. Neuronal, functional, and structural damage can be explained by an imbalance among free radicals, reactive oxygen species, reactive nitrogen species, and antioxidants, which finally lead to oxidative stress. Due to the key role of free radicals, reactive oxygen species, and reactive nitrogen species, antioxidant therapy may reduce the oxidative damage associated with neurodegeneration. Exogenous antioxidants are molecules that may help maintain the balance between the formation and elimination of free radicals, thus protecting the cell from their toxicity. Among them, polyphenols are a broad group of secondary plant metabolites with potent antioxidant properties. Here, we review several studies that show the potential role of polyphenol consumption to prevent, or slow down, harmful oxidative processes linked to neurodegenerative disorders.


2020 ◽  
Vol 60 (1) ◽  
pp. 010504
Author(s):  
Keisuke Takashima ◽  
Ahmad Shahir bin Ahmad Nor ◽  
Sugihiro Ando ◽  
Hideki Takahashi ◽  
Toshiro Kaneko

2020 ◽  
Vol 5 (2) ◽  
pp. 250-257
Author(s):  
Nurul Fatimah ◽  
◽  
Reksi Sundu

Free radicals and reactive species are widely believed to contribute to the development of several diseases by causing oxidative stress and eventually oxidative. Vernonia amygdalina (Astereacea) is a small shrub or tree between 1 and 5m high growing throughout tropical Africa. Plants are generally known as bitter leaves is well cultivated and is a general market for merchandise in several countries. The purpose of this study was to determine the antioxidant activity of hexane fraction from ethanol extract od Frican leaves (Vernonia amygdalina Del.). The method used in this study was the DPPH (1,1-Diphenil-2-Picrylhydrazyl) method. The result of phytochemical screening showed that ethanolic extract of African leaves contained a composition of secondary metabolites of alkaloids, flavonoids, tannins, steroids/triterpenoids and saponins. The antioxidant activity of the extract of n-hexane fraction was classified as very weak with an IC50 value of 317.98 ppm.


Sign in / Sign up

Export Citation Format

Share Document