MICROSTRUCTURE CONTROL OF HOT ROLLED TRIP STEEL BASED ON DYNAMIC TRANSFORMATION OF UNDERCOOLED AUSTENITE I. Prior Austenite Grain Size

2010 ◽  
Vol 2010 (2) ◽  
pp. 155-160 ◽  
Author(s):  
Yunyang YIN ◽  
Wangyue YANG ◽  
Longfei LI ◽  
Zuqing SUN ◽  
Xitao WANG
2018 ◽  
Vol 941 ◽  
pp. 608-613
Author(s):  
Steven G. Jansto

The reheat furnace process step has a profound effect on the TMCP performance, final hot rolled steel quality and mechanical property consistency during the production of hot rolled steels. The uniformity of heating applied across the entire width and length of the slab or billet is critical in the achievement of customer properties regardless of the chemistry. The resultant ferrite grain size in the final hot rolled product is significantly governed by the initial prior austenite grain size. Numerous reheat furnace process metallurgy and combustion parameters in actual operation affect mill productivity, microstructure, austenite grain size, scrap rate and diverts. This reheating step in the steelmaking process often receives low priority in the evaluation of product quality and mechanical property performance, especially the toughness through the plate thickness. Heat transfer conditions of radiation, convection and conduction affect furnace heating efficiency. In laboratory studies, the furnace heating step is typically quite uniform resulting in a homogeneous and fine prior austenite grain size. During production, it is much more difficult to control the uniformity of heating and heat transfer consistency along the entire length and through the thickness of the work piece. The furnace conditions are correlated to product quality via furnace process variables such as the air to gas ratio, furnace burner condition, furnace pressure, energy efficiency, adiabatic flame temperature (AFT) and furnace refractory condition. Operational practice recommendations are presented to minimize inhomogeneous heating which results in inferior product quality, hot rolling model anomalies and toughness variations in the through-thickness-direction.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 324
Author(s):  
David San-Martin ◽  
Matthias Kuntz ◽  
Francisca G. Caballero ◽  
Carlos Garcia-Mateo

This investigation explores the influence of the austenitisation heat treatment and thus, of the prior austenite grain size (PAGS), on the kinetics of the bainitic transformation, using as A case study two high-carbon, high-silicon, bainitic steels isothermally transformed (TIso = 250, 300, 350 °C), after being austenised at different temperatures (γTγ = 925–1125 °C). A methodology, based on the three defining dilatometric parameters extracted from the derivative of the relative change in length, was proposed to analyse the transformation kinetics. These parameters are related to the time to start bainitic transformation, the time lapse for most of the transformation to take place and the transformation rate at the end of the transformation. The results show that increasing the PAGS up to 70 µm leads to an increase in the bainite nucleation rate, this effect being more pronounced for the lowest TIso. However, the overall transformation kinetics seems to be weakly affected by the applied heat treatment (γTγ and TIso). In one of the steels, PAGS > 70 µm (γTγ > 1050 °C), which weakly affects the progress of the transformation, except for TIso = 250 °C, for which the enhancement of the autocatalytic effect could be the reason behind an acceleration of the overall transformation.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 988 ◽  
Author(s):  
Liangyun Lan ◽  
Zhiyuan Chang ◽  
Penghui Fan

The simulation welding thermal cycle technique was employed to generate different sizes of prior austenite grains. Dilatometry tests, in situ laser scanning confocal microscopy, and transmission electron microscopy were used to investigate the role of prior austenite grain size on bainite transformation in low carbon steel. The bainite start transformation (Bs) temperature was reduced by fine austenite grains (lowered by about 30 °C under the experimental conditions). Through careful microstructural observation, it can be found that, besides the Hall–Petch strengthening effect, the carbon segregation at the fine austenite grain boundaries is probably another factor that decreases the Bs temperature as a result of the increase in interfacial energy of nucleation. At the early stage of the transformation, the bainite laths nucleate near to the grain boundaries and grow in a “side-by-side” mode in fine austenite grains, whereas in coarse austenite grains, the sympathetic nucleation at the broad side of the pre-existing laths causes the distribution of bainitic ferrite packets to be interlocked.


2018 ◽  
Vol 941 ◽  
pp. 64-70
Author(s):  
Vahid Javaheri ◽  
Nasseh Khodaei ◽  
Tun Tun Nyo ◽  
David A. Porter

This work explores the effect of heating rate on the prior austenite grain size and hardness of a thermomechanically processed novel niobium-microalloyed 0.40 % carbon low-alloyed steel intended for use in induction hardened slurry pipelines. The aim was to identify the heating rates that lead to the maximum hardness, for high wear resistance, and minimum prior austenite grain size, for high toughness. For this purpose, a Gleeble 3800 machine has been employed to simulate the induction hardening process and provide dilatometric phase transformation data. The prior austenite grain structure has been reconstructed from the EBSD results using a MatlabR script supplemented with MTEX texture and crystallography analyses. Heating rates ranged from 1 to 50 °C/s and the cooling rate was 50 °C/s. The results show that the prior austenite grain size greatly depended on the heating rate: compared to the lower heating rates, the maximum heating rate of 50 C/s produces remarkably fine prior austenite grains and a fine final martensitic microstructure after quenching. In addition, a relation between the heating rate and the deviation from equilibrium temperature has been established.


Sign in / Sign up

Export Citation Format

Share Document