scholarly journals Support Vector Machine based on clustering algorithm for interruptible load forecasting

Author(s):  
Xiang Yu ◽  
Guangfeng Bu ◽  
Bingyue Peng ◽  
Chen Zhang ◽  
Xiaolan Yang ◽  
...  
2018 ◽  
Vol 13 ◽  
pp. 174830181879706 ◽  
Author(s):  
Song Qiang ◽  
Yang Pu

In this work, we summarized the characteristics and influencing factors of load forecasting based on its application status. The common methods of the short-term load forecasting were analyzed to derive their advantages and disadvantages. According to the historical load and meteorological data in a certain region of Taizhou, Zhejiang Province, a least squares support vector machine model was used to discuss the influencing factors of forecasting. The regularity of the load change was concluded to correct the “abnormal data” in the historical load data, thus normalizing the relevant factors in load forecasting. The two parameters are as follows Gauss kernel function and Eigen parameter C in LSSVM had a significant impact on the model, which was still solved by empirical methods. Therefore, the particle swarm optimization was used to optimize the model parameters. Taking the error of test set as the basis of judgment, the optimization of model parameters was achieved to improve forecast accuracy. The practical examples showed that the method in the work had good convergence, forecast accuracy, and training speed.


Author(s):  
Khaled Assi ◽  
Syed Masiur Rahman ◽  
Umer Mansoor ◽  
Nedal Ratrout

Predicting crash injury severity is a crucial constituent of reducing the consequences of traffic crashes. This study developed machine learning (ML) models to predict crash injury severity using 15 crash-related parameters. Separate ML models for each cluster were obtained using fuzzy c-means, which enhanced the predicting capability. Finally, four ML models were developed: feed-forward neural networks (FNN), support vector machine (SVM), fuzzy C-means clustering based feed-forward neural network (FNN-FCM), and fuzzy c-means based support vector machine (SVM-FCM). Features that were easily identified with little investigation on crash sites were used as an input so that the trauma center can predict the crash severity level based on the initial information provided from the crash site and prepare accordingly for the treatment of the victims. The input parameters mainly include vehicle attributes and road condition attributes. This study used the crash database of Great Britain for the years 2011–2016. A random sample of crashes representing each year was used considering the same share of severe and non-severe crashes. The models were compared based on injury severity prediction accuracy, sensitivity, precision, and harmonic mean of sensitivity and precision (i.e., F1 score). The SVM-FCM model outperformed the other developed models in terms of accuracy and F1 score in predicting the injury severity level of severe and non-severe crashes. This study concluded that the FCM clustering algorithm enhanced the prediction power of FNN and SVM models.


Sign in / Sign up

Export Citation Format

Share Document