Density Smoothing Method Considering Wire-Length and Overlap

2010 ◽  
Vol 22 (4) ◽  
pp. 676-681
Author(s):  
Dawei Liu ◽  
Qiang Zhou ◽  
Jinian Bian
Keyword(s):  
1997 ◽  
Vol 473 ◽  
Author(s):  
J. A. Davis ◽  
J. D. Meindl

ABSTRACTOpportunities for Gigascale Integration (GSI) are governed by a hierarchy of physical limits. The levels of this hierarchy have been codified as: 1) fundamental, 2) material, 3) device, 4) circuit and 5) system. Many key limits at all levels of the hierarchy can be displayed in the power, P, versus delay, td, plane and the reciprocal length squared, L-2, versus response time, τ, plane. Power, P, is the average power transfer during a binary switching transition and delay, td, is the time required for the transition. Length, L, is the distance traversed by an interconnect that joins two nodes on a chip and response time, τ, characterizes the corresponding interconnect circuit. At the system level of the hierarchy, quantitative definition of both the P versus td and the L-2 versus τ displays requires an estimate of the complete stochastic wiring distribution of a chip.Based on Rent's Rule, a well known empirical relationship between the number of signal input/output terminals on a block of logic and the number of gate circuits with the block, a rigorous derivation of a new complete stochastic wire length distribution for an on-chip random logic network is described. This distribution is compared to actual data for modern microprocessors and to previously described distributions. A methodology for estimating the complete wire length distribution for future GSI products is proposed. The new distribution is then used to enhance the critical path model that determines the maximum clock frequency of a chip; to derive a preliminary power dissipation model for a random logic network; and, to define an optimal architecture of a multilevel interconnect network that minimizes overall chip size. In essence, a new complete stochastic wiring distribution provides a generic basis for maximizing the value obtained from a multilevel interconnect technology.


10.29007/zw9k ◽  
2020 ◽  
Author(s):  
Kazuhide Nakata ◽  
Kazuki Umemoto ◽  
Kenji Kaneko ◽  
Ryusuke Fujisawa

This study addresses the development of a robot for inspection of old bridges. By suspending the robot with a wire and controlling the wire length, the movement of the robot is realized. The robot mounts a high-definition camera and aims to detect cracks on the concrete surface of the bridge using this camera. An inspection method using an unmanned aerial vehicle (UAV) has been proposed. Compared to the method using an unmanned aerial vehicle, the wire suspended robot system has the advantage of insensitivity to wind and ability to carry heavy equipments, this makes it possible to install a high-definition camera and a cleaning function to find cracks that are difficult to detect due to dirt.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Jin Soo Park ◽  
Dong-Hyun Kang ◽  
Seung Min Kwak ◽  
Tae Song Kim ◽  
Jung Ho Park ◽  
...  

2009 ◽  
Vol 179 (1) ◽  
pp. 131-141 ◽  
Author(s):  
Hariharan Nalatore ◽  
Mingzhou Ding ◽  
Govindan Rangarajan

2016 ◽  
Vol 685 ◽  
pp. 511-515
Author(s):  
Yuriy Irtegov ◽  
Vladimir An ◽  
Ksenia Machekhina ◽  
Nikolay Lemachko

Efficient two-step technique of tungsten and molybdenum disulfides obtaining from metal nanopowders produced by EEW and elementary sulphur is described. Tungsten and molybdenum nanopowders surface area dependence on wire length is studied. Features of metal and sulphur combustion process are discussed. It is determined sulphur excess in reagents 15 wt.% results in mono-phase metal disulfide formation with small free sulphur concentration in reaction products.


Sign in / Sign up

Export Citation Format

Share Document