Influences of various grazing systems on community biomass of a desert grassland in Inner Mongolia,China

2012 ◽  
Vol 4 (4) ◽  
pp. 303
Author(s):  
Yan Rui-Rui ◽  
Xin Xiao-Ping ◽  
Wei Zhi-Jun ◽  
Liu Shi-Min ◽  
Yang Jing ◽  
...  
2009 ◽  
Vol 6 (5) ◽  
pp. 795-805 ◽  
Author(s):  
K. Auerswald ◽  
M. H. O. M. Wittmer ◽  
T. T. Männel ◽  
Y. F. Bai ◽  
R. Schäufele ◽  
...  

Abstract. This work explored the spatial variation of C3/C4 distribution in the Inner Mongolia, P. R. China, steppe by geostatistical analysis of carbon isotope data of vegetation and sheep wool. Standing community biomass (n=118) and sheep wool (n=146) were sampled in a ~0.2 Mio km2 area. Samples from ten consecutive years (1998–2007) were obtained. Community biomass samples represented the carbon isotopic composition of standing vegetation on about 1000 m2 ("community-scale"), whereas the spatio-temporal scale of wool reflected the isotope composition of the entire area grazed by the herd during a 1-yr period (~5–10 km2, "farm-scale"). Pair wise sampling of wool and vegetation revealed a 13C-enrichment of 2.7±0.7‰ (95% confidence interval) in wool relative to vegetation, but this shift exhibited no apparent relationships with environmental parameters or stocking rate. The proportion of C4 plants in above-ground biomass (PC4, %) was estimated with a two-member mixing model of 13C discrimination by C3 and C4 vegetation (13Δ3 and 13Δ4, respectively), in accounting for the effects of changing 13C in atmospheric CO2 on sample isotope composition, and of altitude and aridity on 13Δ3. PC4 averaged 19%, but the variation was enormous: full-scale (0% to 100%) at community-scale, and 0% to 85% at farm-scale. The farm-scale variation of PC4 exhibited a clear regional pattern over a range of ~250 km. Importantly PC4 was significantly higher above the 22°C isotherm of the warmest month, which was obtained from annual high-resolution maps and averaged over the different sampling years. This is consistent with predictions from C3/C4 crossover temperature of quantum yield or light use efficiency in C3 and C4 plants. Still, temperature gradients accounted for only 10% of the farm-scale variation of PC4, indicating that additional factors control PC4 on this scale.


Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 38
Author(s):  
Zhichao Xue ◽  
Martin Kappas ◽  
Daniel Wyss

Protection of the grassland’s ecological environment and improvement of people’s livelihoods are major tasks for the management of pastoral areas in Inner Mongolia. The comprehensive program for grassland conservation in China, the Subsidy and Incentive System for Grassland Conservation (SISGC), was launched in 2011. To comprehend the effects of this major step towards sustainable grassland development, this study focuses on the spatio-temporal development of grasslands in Inner Mongolia since 2011. Through the combination of MODIS (Moderate-resolution Imaging Spectroradiometer) satellite data with up to date meteorological data, we used the indicators of Fractional Vegetation Cover (FVC) and Net Primary Productivity (NPP) to analyze qualitative and quantitative grassland changes. A classification system on the pixel level, reflecting change trends and fluctuations of both FVC and NPP, was applied to monitor and analyze the grassland development from 2011 to 2019. In particular, the spatial transfer matrix of the recent two years (2018 to 2019) was analyzed to reveal the latest potential issues and random impact factors. The results show a positive overall but spatially unbalanced effect of SISGC, with a prominent positive impact in the semi-desert grassland area. The potential threats from both social and natural aspects as well as the importance of a forecast system for local stakeholders in the pastoral area are discussed.


2020 ◽  
Vol 42 (2) ◽  
pp. 135
Author(s):  
Saheed Olaide Jimoh ◽  
Yantin Yin ◽  
Ping Li ◽  
Taofeek Olatunbosun Muraina ◽  
Xiangyang Hou

In grazing systems, stocking rate (SR) is critical for the maintenance of grassland and livestock productivity. However, little is known about the relationship between the amount of supplementary feed used by livestock producers and SR, particularly across the pastoral areas of Inner Mongolia, China. This limits the understanding of whether feed supplements impact SR. Therefore, we studied 716 herding households using a two-round panel dataset collected across the five ecosystem types in Inner Mongolia. We used linear mixed-effects models to examine how the amount of supplementary feeds affects SR. Our results show that feed supplementation is not associated with increased SR across the grassland ecosystems. The amount of grains and pellets used by households was negatively related to SR, whereas the amount of hay was not correlated with SR. Overall, these results demonstrate that feed supplementation did not influence herders’ decision to overgraze. Thus, policies that underpin the scientific exploration of novel approaches to supplementary feed use in grazing systems are required. This could help achieve environmental sustainability and enhance the attainment of the desired modern livestock production system in Inner Mongolia and similar ecosystems.


2009 ◽  
Vol 6 (1) ◽  
pp. 545-574 ◽  
Author(s):  
K. Auerswald ◽  
M. H. O. M. Wittmer ◽  
T. T. Männel ◽  
Y. F. Bai ◽  
R. Schäufele ◽  
...  

Abstract. This work explored the spatial variation of C3/C4 distribution in the Inner Mongolia, China, steppe by geostatistical analysis of carbon isotope data of vegetation and sheep wool. Standing community biomass (n=118) and sheep wool (n=146) were sampled in a ~0.2 Mio km2 area. Samples from ten consecutive years (1998–2007) were obtained. Community biomass samples represented the carbon isotopic composition of standing vegetation on about 1000 m2 ("community-scale"), whereas the spatio-temporal scale of wool reflected the isotope composition of the entire area grazed by the herd during a 1-yr period (~5–10 km2, "farm-scale"). Pair wise sampling of wool and vegetation revealed a 13C-enrichment of 2.7‰ in wool relative to vegetation, but this shift exhibited no apparent relationships with environmental parameters or stocking rate. The proportion of C4 plants in above-ground biomass (PC4, %) was estimated with a two-member mixing model of C3 and C4 13C discrimination (13Δ3 and 13Δ4, respectively), in accounting for the effects of changing 13C in atmospheric CO2 on sample isotope composition, and of altitude and aridity on 13Δ3. PC4 averaged 19%, but the variation was enormous: full-scale (0% to 100%) at community-scale, and 0% to 85% at farm-scale. The farm-scale variation of PC4 exhibited a clear regional pattern over a range of ~250 km. Importantly PC4 was significantly higher above and lower below the 22°C isotherm of the warmest month, which was averaged from high-resolution maps of the sample years. This is consistent with predictions from C3/C4 crossover temperature of quantum yield in C3 and C4 plants. Still, temperature gradients accounted for only 10% of the farm-scale variation of PC4, indicating that additional factors control PC4 on this scale.


2022 ◽  
Vol 14 (2) ◽  
pp. 242
Author(s):  
Haiyang Pang ◽  
Aiwu Zhang ◽  
Shengnan Yin ◽  
Jiaxin Zhang ◽  
Gang Dong ◽  
...  

Estimating the carbon (C), nitrogen (N), and phosphorus (P) contents of a large-span grassland transect is essential for evaluating ecosystem functioning and monitoring biogeochemical cycles. However, the field measurements are scattered, such that they cannot indicate the continuous gradient change in the grassland transect. Although remote sensing methods have been applied for the estimation of nutrient elements at the local scale in recent years, few studies have considered the effective estimation of C, N, and P contents over large-span grassland transects with complex environment including a variety of grassland types (i.e., meadow, typical grassland, and desert grassland). In this paper, an information enhancement algorithm (involving spectral enhancement, regional enhancement, and feature enhancement) is used to extract the weak information related to C, N, and P. First, the spectral simulation algorithm is used to enhance the spectral information of Sentinel-2 imagery. Then, the enhanced spectra and meteorological data are fused to express regional characteristics and the fractional differential (FD) algorithm is used to extract sensitive spectral features related to C, N, and P, in order to construct a partial least-squares regression (PLSR) model. Finally, the C, N, and P contents are estimated over a West–East grassland transect in Inner Mongolia, China. The results demonstrate that: (i) the contents of C, N, and P in large-span transects can be effectively estimated through use of the information enhancement method involving spectral enhancement, regional feature enhancement, and information enhancement, for which the estimation accuracies (R2) were 0.88, 0.78, and 0.85, respectively. Compared with the estimation results of raw Sentinel-2 imagery, the RMSE was reduced by 3.42 g/m2, 0.14 g/m2, and 13.73 mg/m2, respectively; and (ii) the continuous change trend and spatial distribution characteristics of C, N, and P contents in the west–east transect of the Inner Mongolia Plateau were obtained, which showed decreasing trends in C, N, and P contents from east to west and the characteristics of meadow > typical grassland > desert grassland. Thus, the information enhancement algorithm can help to improve estimates of C, N, and P contents when considering large-span grassland transects.


2015 ◽  
Vol 9 (1) ◽  
pp. 23-28
Author(s):  
Xiajie Zhai ◽  
Tingting Lu ◽  
Shiming Tang ◽  
Xiaojuan Liu ◽  
Xiuzhi Ma ◽  
...  

Methane (CH4) emissions from ruminants should be accounted for the natural grazed rangeland ecosystems when devising greenhouse gas budget inventory, in particular, their contribution to global warming. In this study, CH4 emission from sheep respiration at different grazing intensities (light grazing, 0.75 sheep/ha, LG; moderate grazing, 1.50 sheep/ha, MG; and heavy grazing, 2.25 sheep/ha, HG) and in sheepfolds were evaluated in a desert grassland of Inner Mongolia. Results indicated that daily CH4 emission from sheep was not significantly different between treatments. When CH4 emission was expressed emission per 100g daily, there was a significant difference of LG vs HG and MG vs HG, with the values of 15.64g, 20.00g and 28.63g for LG, MG and HG, respectively, during the grazing season. There was no significant difference among CH4 fluxes in sheepfolds (mean 39.0 ug m-1 h-1). Considering CH4 emissions from the grazing ecosystem, net CH4 emissions from LG, MG and HG plots were -18.33, -1.91 and 21.19 g/ha/day, respectively. The digestibility of forage had a positive correlation with CH emission expressed on daily and metabolic body weight basis. It is concluded that MG will improve the balance between CH emission from grassland and grazing livestock in the desert grasslands of Inner Mongolia.


Sign in / Sign up

Export Citation Format

Share Document