Seismic behavior of steel reinforced concrete mid-rise shear wall

2012 ◽  
Vol 29 (1) ◽  
pp. 38-44 ◽  
Author(s):  
Ming-ji FANG ◽  
Guo-qiang LI ◽  
Yi-song LI
2013 ◽  
Vol 353-356 ◽  
pp. 1990-1999
Author(s):  
Yi Sheng Su ◽  
Er Cong Meng ◽  
Zu Lin Xiao ◽  
Yun Dong Pi ◽  
Yi Bin Yang

In order to discuss the effect of different concrete strength on the seismic behavior of the L-shape steel reinforced concrete (SRC) short-pier shear wall , this article analyze three L-shape steel reinforced concrete short-pier shear walls of different concrete strength with the numerical simulation software ABAQUS, revealing the effects of concrete strength on the walls seismic behavior. The results of the study show that the concrete strength obviously influence the seismic performance. With the concrete strength grade rise, the bearing capacity of the shear wall becomes large, the ductility becomes low, the pinch shrinkage effect of the hysteresis loop becomes more obvious.


2011 ◽  
Vol 368-373 ◽  
pp. 2041-2044
Author(s):  
Wen Wu Lan ◽  
Xiu Ning Peng ◽  
Xiao Hua Huang ◽  
Yu Lei

A new type of construction employing shaped steels as boundary elements and layered braces of RC(Reinforced Concrete) short-pier shear wall is put forward. The braces are in X shape and are erected in a multi-storied form. They are embedded in the boundary zone and the web of SRC (Steel Reinforced Concrete) short-pier shear wall respectively to make it possible to improve the bearing capacity and ductility of this shear wall and to improve its seismic performance. Three half-scale specimens of the SRC short-pier shear wall are tested under reversed cyclic loading. High design axial load radio of 0.5 is used. The failure processes and modes of the specimens are observed. The law about bearing capacity and displacement ductility of the specimens influenced by the layered braces structures is revealed. The experimental results show that the displacement ductility is closely related to the amount of stories of braces. The specimens with layered braces structures have better ductility and larger bearing capacity, and therefore the layered braces structures effectively improve the seismic performance of the SRC short-pier shear wall.


2012 ◽  
Vol 446-449 ◽  
pp. 2305-2308
Author(s):  
Guang Qiang Zhou ◽  
Qing Yang Liu ◽  
De Yuan Zhou

Based on the experiment of four models of reduced scale high-rise reinforced concrete wall under low-reversed cyclic loading, seismic behavior of reinforced concrete (RC) shear wall with diagonal web reinforcement under different ratio of axial compression is studied, in comparison to ordinary shear wall. The experiment result shows that diagonal bars affect the distribution of cracks and help to resist shear slip at the bottom of the wall. Seismic behavior of high-rise shear wall, which horizontal bars are replaced with the same amount diagonal bars in part can be obviously improved when the ratio of axial compression is high, but when the ratio of axial compression is low, the effect is not obvious.


2010 ◽  
Vol 163-167 ◽  
pp. 1329-1332
Author(s):  
Bin Liang ◽  
Meng Yang

The structural behavior of a steel reinforced concrete (SRC) transfer beam in high-rise building is studied in the paper. Mechanical properties and deformation characteristics between transfer beam and shear wall are analyzed by an analytic approach and the nonlinear finite element method. The stress analytical solutions for the SRC transfer beam are obtained and agree with finite element calculation data in an actual project. The results show that the beam can be as an eccentric tension member, meanwhile the performance of shear wall must be considered. And it also shows that the shear stress and vertical compressed stress must be considered in end both transfer beam and shear wall and there is interaction between the beam and the shear walls above. The results can be used to describe the behavior of the SRC transfer beam under complicated loads.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Hongmei Zhang ◽  
Jinzhi Dong ◽  
Yuanfeng Duan ◽  
Xilin Lu ◽  
Jinqing Peng

BIPV is now widely used in office and residential buildings, but its seismic performance still remained vague especially when the photovoltaic (PV) modules are installed on high-rise building facades. A new form of reinforced concrete shear wall integrated with photovoltaic module is proposed in this paper, aiming to apply PV module to the facades of high-rise buildings. In this new form, the PV module is integrated with the reinforced concrete wall by U-shaped steel connectors through embedded steel plates. The lateral cyclic loading test is executed to investigate the seismic behavior and the electric and thermal performance with different drift angles. The seismic behavior, including failure pattern, lateral force-top displacement relationship, and deformation capacity, was investigated. The power generation and temperature variation on the back of the PV module and both sides of the shear wall were also tested. Two main results are demonstrated through the experiment: (1) the U-shaped steel connectors provide enough deformation capacity for the compatibility of the PV module to the shear wall during the whole cyclic test; (2) the electricity generation capacity is effective and stable during this seismic simulation test.


Sign in / Sign up

Export Citation Format

Share Document