scholarly journals IMPROVING THE QUALITY OF DESIGNING LOW-FLOW STAGES OF CENTRIFUGAL COMPRESSORS DUE TO VERIFICATION AND VALIDATION OF CALCULATED CFD MODELS

Author(s):  
V.M. Ivanov ◽  
◽  
Yu.V. Kozhukhov ◽  
A.M. Danylyshyn ◽  
◽  
...  

The quality of the produced centrifugal compressors largely depends on the design quality of the flow path. In order to carry out high-quality design of low-flow stages of centrifugal compressors, in this work, a numerical model of a low-flow stage is verified and validated, which are based on modern methods of computational fluid dynamics - CFD (computational fluid dynamics) as part of CALS technologies. In the numerical model of the step, clearances and labyrinth seals were modeled. The issues of using intergrid interfaces, application of turbulence and roughness models are considered. The obtained settings of the numerical model were used to validate seven model stages for the range of the optimal conditional flow rate Φopt = 0.008-0.018 at Mu = 0.785-0.804. The simulation results were compared with experimental data.

2013 ◽  
Vol 368-370 ◽  
pp. 599-602 ◽  
Author(s):  
Ian Hung ◽  
Hsien Te Lin ◽  
Yu Chung Wang

This study focuses on the performance of air conditioning design at the Dazhi Cultural Center and uses a computational fluid dynamics (CFD) simulation to discuss the differences in wind velocity and ambient indoor temperature between all-zone air conditioning design and stratified air conditioning design. The results have strong implications for air conditioning design and can improve the indoor air quality of assembly halls.


Author(s):  
Hasham H. Chougule ◽  
Alexander Mirzamoghadam

The objective of this study is to develop a Computational Fluid Dynamics (CFD) based methodology for analyzing and predicting leakage of worn or rub-intended labyrinth seals during operation. The simulations include intended tooth axial offset and numerical modeling of the flow field. The purpose is to predict total leakage through the seal when an axial tooth offset is provided after the intended/unintended rub. Results indicate that as expected, the leakage for the in-line worn land case (i.e. tooth under rub) is higher compared to unworn. Furthermore, the intended rotor/teeth forward axial offset/shift with respect to the rubbed land reduces the seal leakage. The overall leakage of a rubbed seal with axial tooth offset is observed to be considerably reduced, and it can become even less than a small clearance seal designed not to rub. The reduced leakage during steady state is due to a targeted smaller running gap because of tooth offset under the intended/worn land groove shape, higher blockages, higher turbulence and flow deflection as compared to worn seal model without axial tooth offset.


2021 ◽  
Vol 2059 (1) ◽  
pp. 012003
Author(s):  
A Burmistrov ◽  
A Raykov ◽  
S Salikeev ◽  
E Kapustin

Abstract Numerical mathematical models of non-contact oil free scroll, Roots and screw vacuum pumps are developed. Modelling was carried out with the help of software CFD ANSYS-CFX and program TwinMesh for dynamic meshing. Pumping characteristics of non-contact pumps in viscous flow with the help of SST-turbulence model were calculated for varying rotors profiles, clearances, and rotating speeds. Comparison with experimental data verified adequacy of developed CFD models.


2020 ◽  
Vol 220 ◽  
pp. 01082
Author(s):  
Yuri Kozhukhov ◽  
Serafima Tatchenkova ◽  
Sergey Kartashov ◽  
Vyacheslav Ivanov ◽  
Evgeniy Nikitin

This paper provides the results of the study of a spatial flow in a low-flow stage of a SVD-22 centrifugal compressor of computational fluid dynamics methods using the Ansys CFX 14.0 software package. Low flow stages are used as the last stages of multistage centrifugal compressors. Such multistage compressors are widely used in boosting compressor stations for natural gas, in chemical industries. The flow features in low-flow stages require independent research. This is due to the fact that the developed techniques for designing centrifugal compressor stages are created for medium-flow and high-flow stages and do not apply to low-flow stages. Generally at manufacturing new centrifugal compressors, it is impossible to make a control measurement of the parameters of the working process inside the flow path elements. Computational fluid dynamics methods are widely used to overcome this difficulties. However verification and validation of CFD methods are necessary for accurate modeling of the workflow. All calculations were conducted on one of the SPbPU clusters. Parameters of one cluster node: AMD Opteron 280 2 cores, 8GB RAM. The calculations were conducted using 4 nodes (HP MPI Distributed Parallel startup type) with their full load by parallelizing processes on each node.


Author(s):  
Jian-Xun Wang ◽  
Christopher J. Roy ◽  
Heng Xiao

Proper quantification and propagation of uncertainties in computational simulations are of critical importance. This issue is especially challenging for computational fluid dynamics (CFD) applications. A particular obstacle for uncertainty quantifications in CFD problems is the large model discrepancies associated with the CFD models used for uncertainty propagation. Neglecting or improperly representing the model discrepancies leads to inaccurate and distorted uncertainty distribution for the quantities of interest (QoI). High-fidelity models, being accurate yet expensive, can accommodate only a small ensemble of simulations and thus lead to large interpolation errors and/or sampling errors; low-fidelity models can propagate a large ensemble, but can introduce large modeling errors. In this work, we propose a multimodel strategy to account for the influences of model discrepancies in uncertainty propagation and to reduce their impact on the predictions. Specifically, we take advantage of CFD models of multiple fidelities to estimate the model discrepancies associated with the lower-fidelity model in the parameter space. A Gaussian process (GP) is adopted to construct the model discrepancy function, and a Bayesian approach is used to infer the discrepancies and corresponding uncertainties in the regions of the parameter space where the high-fidelity simulations are not performed. Several examples of relevance to CFD applications are performed to demonstrate the merits of the proposed strategy. Simulation results suggest that, by combining low- and high-fidelity models, the proposed approach produces better results than what either model can achieve individually.


2015 ◽  
Vol 73 (5) ◽  
pp. 969-982 ◽  
Author(s):  
Edward Wicklein ◽  
Damien J. Batstone ◽  
Joel Ducoste ◽  
Julien Laurent ◽  
Alonso Griborio ◽  
...  

Computational fluid dynamics (CFD) modelling in the wastewater treatment (WWT) field is continuing to grow and be used to solve increasingly complex problems. However, the future of CFD models and their value to the wastewater field are a function of their proper application and knowledge of their limits. As has been established for other types of wastewater modelling (i.e. biokinetic models), it is timely to define a good modelling practice (GMP) for wastewater CFD applications. An International Water Association (IWA) working group has been formed to investigate a variety of issues and challenges related to CFD modelling in water and WWT. This paper summarizes the recommendations for GMP of the IWA working group on CFD. The paper provides an overview of GMP and, though it is written for the wastewater application, is based on general CFD procedures. A forthcoming companion paper to provide specific details on modelling of individual wastewater components forms the next step of the working group.


2011 ◽  
Vol 236-238 ◽  
pp. 1619-1622 ◽  
Author(s):  
Bo Fu Wu ◽  
Jin Lai Men ◽  
Jie Chen

In order to enhance the operational safety of tram vehicle and reduce the wear of guide wheels mounted on the vehicle, it is necessary to remove particles such as dusts and silts from tramway surface. The aim of this paper is to evaluate the effectiveness of street vacuum sweeper for sucking up dusts from tramway surface. A numerical model was developed based on dusts removal process. Under different pressure drops across the pickup head of the street vacuum sweeper, the flow field and dusts removal efficiency were analyzed with computational fluid dynamics (CFD) method. The numerical results show that a higher pressure drop can improve the airflow field in the pickup head and results in higher dusts removal efficiency, but higher pressure drop definitely need more energy. Therefore, a balance should be taken into consideration.


2021 ◽  
pp. 24-30
Author(s):  
S. V. Kartashev ◽  
◽  
Yu. V. Kozhukhov ◽  

The paper considers the issue of improving the quality of the numerical experiment in the calculation of viscous gas in the flowing part of a low-flow centrifugal compressor stage. The choice of turbulence model in creating a calculation model for calculations by methods of computational fluid dynamics is substantiated. As object of research is chosen low-flow stage with conditional flow coefficient Ф=0,008 and relative width at impeller outlet b2 /D2 =0,0133. The issue of qualitative modeling of friction losses in low-flow stages is of fundamental importance and is directly related to the choice of turbulence model. It is shown that the choice of low-Reynolds turbulence models in the case of unloaded and discontinuous low-flow stages can be made from the main common models (SpalartAllmaras, SST, k-ω) based on the economy of calculations, speed of convergence, solution stability and adequacy of the obtained results. For models with wall functions, the quality of the mesh model and the observance of the dimensionless distance to the wall y+ throughout the calculation domain are particularly important. For highReynolds turbulence models, at values of y+=25...50 on all friction surfaces of the computational domain in the optimal mode of operation, the grid independence of the solution for the entire gas-dynamic characteristic is ensured. It is unacceptable for y+ to fall into the transition region of 4...15 between the viscous sublayer and the region of the logarithmic velocity profile


Author(s):  
Jason Smith ◽  
Robert N. Eli

This paper reports on a laboratory experiment conducted more than 30 years ago (Eli, 1974, unpublished), and recent Computational Fluid Dynamics (CFD) investigations, focusing on the properties of a plane tangential jet produced by an apparatus called a “centrifugal nozzle.” The authors believe that the centrifugal nozzle has potential industrial applications in several areas related to fluid mixing and particulate matter suspension in mixing tanks. It is also believed that this experiment, or one similar, may provide data useful for benchmarking CFD models.


Sign in / Sign up

Export Citation Format

Share Document