Numerical Investigation of Dusts Removal from Tramway Surface by Street Vacuum Sweeper

2011 ◽  
Vol 236-238 ◽  
pp. 1619-1622 ◽  
Author(s):  
Bo Fu Wu ◽  
Jin Lai Men ◽  
Jie Chen

In order to enhance the operational safety of tram vehicle and reduce the wear of guide wheels mounted on the vehicle, it is necessary to remove particles such as dusts and silts from tramway surface. The aim of this paper is to evaluate the effectiveness of street vacuum sweeper for sucking up dusts from tramway surface. A numerical model was developed based on dusts removal process. Under different pressure drops across the pickup head of the street vacuum sweeper, the flow field and dusts removal efficiency were analyzed with computational fluid dynamics (CFD) method. The numerical results show that a higher pressure drop can improve the airflow field in the pickup head and results in higher dusts removal efficiency, but higher pressure drop definitely need more energy. Therefore, a balance should be taken into consideration.

2010 ◽  
Vol 458 ◽  
pp. 63-68 ◽  
Author(s):  
Xiu Qing Fu ◽  
Min Kang ◽  
Q.Y. Zheng

To design the flow field of inner-spraying ball-end cathode in NC-ECM, the numerical model was bulit according to the physical model of the cathode flow channal, and the computational fluid dynamics (CFD) method was applied to slove the numerical model. The velocity and pressure distributations were obtained. The influences of the cathode internal structure and the outlet shape on the velocity of electrolyte were analyzed on the basis of the numerical simulation. The relatively good simulation results were obtained by means of the optimization design of the cathode. Based on the experiment results, the accuracy of simulation was verified, and the correction number of the design of the flow field was reduced in NC-ECM. It is indicated that the computational fluid dynamics (CFD) method can be applied to simulate the flow field, and the optimization design of the cathode can be guided according to the results of simulation.


2014 ◽  
Vol 643 ◽  
pp. 316-321
Author(s):  
Qing Zheng Meng ◽  
Lin Cai ◽  
Miao He

The performance of a hydrodynamic journal bearing with different center circumferential grooves (CGs) is investigated using Computational fluid dynamics (CFD) simulation. The influences of the CG extended angel have been investigated based on the numerical model. The results show that the CG of millimeter range depth in load zone is not good for the bearing performance but it is opposite in unload zone.


2019 ◽  
Vol 2 (1) ◽  
Author(s):  
Sulistiya Sulistiya ◽  
Alief Sadlie Kasman

AbstractNumerical simulation using Computational Fluid Dynamics (CFD) method is one way of predicting airflow characteristics on the model. This method is widely used because it is relatively inexpensive and faster in getting desired results compared with performing direct testing. The correctness of a computational simulation output is highly dependent on the input and how it was processed. In this paper, simulation is done on Onera M6 Wing, to investigate the effect of a turbulence model’s application on the accuracy of the computational result. The choice of Onera M6 Wing as a simulation’s model is due to its extensive database of testing results from various wind tunnels in the world. Among Turbulence models used are Spalart-Allmaras, K-Epsilon, K-Omega, and SST.Keywords: CFD, fluent, Model, Turbulence, Onera M6, Spalart-Allmaras, K-Epsilon, K-Omega, SST.AbstraksSimulasi numerik dengan menggunakan metode Computational Fluid Dynamics (CFD) merupakan salah satu cara untuk memprediksi karakteristik suatu aliran udara yang terjadi pada model. Metode ini banyak digunakan karena sifatnya yang relatif murah dan cepat untuk mendapatkan hasil dibandingkan dengan melakukan pengujian langsung. Benar tidak hasil sebuah simulasi komputasi sangat tergantung pada inputan yang diberikan serta cara memproses data inputan tersebut. Pada tulisan ini dilakukan simulasi dengan menggunakan sayap onera M6 dengan tujuan untuk mengetahui pengaruh penggunaan model turbulensi terhadap keakuratan hasil komputasi. Pilihan sayap onera M6 sebagai model simulasi dikarenakan model tersebut sudah memiliki database hasil pengujian yang cukup lengkap dan sudah divalidasi dari berbagai terowongan angin di dunia. Model turbulensi yang digunakan diantaranya Spalart-Allmaras, K-Epsilon, K-Omega dan SST.Kata Kunci : CFD, fluent, Model, Turbulensi, Onera M6, Spalart-Allmaras, K-Epsilon, K-Omega, SST.


2013 ◽  
Vol 61 (1) ◽  
pp. 155-160 ◽  
Author(s):  
G. Sztarbała

Abstract The aim of this paper is to present the application of Computational Fluid Dynamics (CFD) to the assessment of conditions inside construction works during a fire. The CFD method is now commonly used to support the design process of fire safety in construction works. This method is very useful at the preliminary stage of design because it is possible to check the internal environment during a fire and evaluate whether requirements of fire safety are met


2011 ◽  
Vol 55-57 ◽  
pp. 343-347 ◽  
Author(s):  
Yi Gang Luan ◽  
Hai Ou Sun

In this article, computational fluid dynamics(CFD) method is used to predict the effect of blade numbers on the pressure drop of axial cyclone separators. A three-dimensional model is built to acquire the resistance of axial cyclone separators with different blade numbers. The flow field inside cyclone separators is calculated using 3D Reynolds-averaged Navier-Stokes equations. And turbulence model is used to simulate the Reynold stress. Also pressure drop of cyclone separators with different blade numbers is expressed as a function of different inlet velocities. At the same inlet velocity with increasing the blade numbers, pressure drops of cyclones reduce greatly. And changing the blade number of cyclone separator is an effective method to improve its resistance performance.


2012 ◽  
Vol 220-223 ◽  
pp. 1698-1702
Author(s):  
Jian Chen ◽  
Zhu Ming Su ◽  
Qi Zhou ◽  
Jian Ping Shu

A novel hydraulic rotary high speed on/off valve is investigated. The function of the outlet turbine and the effect on revolution speed of valve spool are analyzed. The inner fluid flow condition under full open case of the on/off valve is simulated using computational fluid dynamics(CFD) method based on Ansys/Fluent and velocity and pressure profiles of fluid inside valve are obtained. Suggestions on optimizing the geometry of valve to decrease transition losses are given.


RSC Advances ◽  
2015 ◽  
Vol 5 (37) ◽  
pp. 28938-28949 ◽  
Author(s):  
Reza Gharibshahi ◽  
Arezou Jafari ◽  
Ali Haghtalab ◽  
Mohammad Saber Karambeigi

In this study a computational fluid dynamics (CFD) method has been developed to simulate the effect of pore morphology and its distribution in a 2D micromodel on the enhanced oil recovery factor of nanofluid flooding.


Author(s):  
Xiang Zhao ◽  
Trent Montgomery ◽  
Ping Lu ◽  
Sijun Zhang

This paper presents flow simulations in packed beds by a coupled discrete element method (DEM) and computational fluid dynamics (CFD) approach. The realistic packing structure in packed beds is generated by DEM. Then the packing structure is imported into the CFD preprocessor to generate a mesh for flow simulations in packed beds. The subsequent CFD simulations are carried out. The predicted results reveal that not only the local behavior but also macroscopic quantities like the pressure drop depend remarkably on the local packing structural parameters, which is unable to be taken into account when using correlations with averaged values.


Author(s):  
Kuo-Ying Tsai ◽  
Shih-Chang Ku

A crack with unusual failure mode after thermal shock test (TST) is observed on the die bulk of certain bare-die FCBGA, in which the crack penetrates longitudinally within silicon die region. The computational fluid dynamics (CFD) method is introduced to investigate this phenomenon. The transient analysis results indicate a significant temperature difference existing between top and bottom surfaces of the silicon die in the very beginning of the liquid-to-liquid temperature transition. This could be fatal to a brittle material like silicon. Some possible solutions are then surveyed to alleviate the thermal impact to the FCBGA. At least one of enhanced proposals is proved effective to eliminate die crack occurrence after TST.


Sign in / Sign up

Export Citation Format

Share Document