scholarly journals Estimation of the Kinetic Parameters of a Catalytic Cracking Model Case Study

2019 ◽  
Vol 70 (10) ◽  
pp. 3532-3537

This paper presents the research regarding determination of kinetic model parameters from a catalytic cracking process. Starting from the Weekman kinetic model, the authors proposed a simplified version of this model and, based on experimental data form a catalytic cracking plant, they have numerical determined the coefficients of the new kinetic model. For this purpose, there were defined two objective functions; the first function is based on errors generated by estimation of the riser outlet temperature and the second function associated to the errors generated by the estimation of the gasoline yield. The minimization of the two objective functions has been solve by using Optimization Toolbox from MATLAB programming language. The results showed that the objective function that depends on gasoline yield allows more accurate estimation of the kinetic parameters from this model. Keywords: kinetic model, optimization, catalytic cracking

2019 ◽  
Vol 70 (10) ◽  
pp. 3532-3537
Author(s):  
Cristina Popa ◽  
Nicoleta Nicolae ◽  
Cristian Patrascioiu

This paper presents the research regarding determination of kinetic model parameters from a catalytic cracking process. Starting from the Weekman kinetic model, the authors proposed a simplified version of this model and, based on experimental data form a catalytic cracking plant, they have numerical determined the coefficients of the new kinetic model. For this purpose, there were defined two objective functions; the first function is based on errors generated by estimation of the riser outlet temperature and the second function associated to the errors generated by the estimation of the gasoline yield. The minimization of the two objective functions has been solve by using Optimization Toolbox from MATLAB programming language. The results showed that the objective function that depends on gasoline yield allows more accurate estimation of the kinetic parameters from this model.


2018 ◽  
Vol 69 (10) ◽  
pp. 2633-2637
Author(s):  
Raluca Dragomir ◽  
Paul Rosca ◽  
Cristina Popa

The main objectives of the present paper are to adaptation the five-kinetic model of the catalytic cracking process and simulation the riser to predicts the FCC products yields when one of the major input variable of the process is change. The simulation and adaptation are based on the industrial data from Romanian refinery. The adaptation is realize using a computational method from Optimization Toolbox from Matlab programming language. The new model can be used for optimization and control of FCC riser.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. e15161-e15161
Author(s):  
Ting Chen ◽  
Yanan Zheng ◽  
Lorin Roskos ◽  
Donald E Mager

e15161 Background: This study aimed to predict OS/OR and identify key predictors in patients with diverse cancer types treated with durvalumab, a PD-L1 targeting monoclonal antibody, using a hybrid modeling strategy that combines population pharmacodynamic (PD) modeling and machine learning (ML) algorithms. Methods: Individual longitudinal tumor size measurements and OS/OR data were available for 855 patients who received durvalumab therapy (10 mg/kg Q2W or 20 mg/kg Q4W; NCT01693562). Nine cancer types included non-small cell lung cancer (NSCLC), bladder cancer (BC), microsatellite instability-high (MSI-H) cancer, hepatocellular carcinoma (HCC), squamous cell carcinoma of the head and neck (SCCHN), gastroesophageal cancer (GEC), ovarian cancer (OC), pancreatic adenocarcinoma (PDAC) and triple-negative breast cancer (TNBC). A tumor kinetic model was developed to characterize diverse temporal profiles using a population-based modeling approach. Individual estimated tumor kinetic model parameters and patient demographic/physiological factors were used as inputs for predicting OS/OR using several ML approaches. Results: The final tumor kinetic model with liver metastasis (LM), neutrophil/lymphocyte ratio (NLR), tumor size at baseline (TBSL) and cancer types as covariates characterized the temporal tumor size data well. HCC and MSI-H cancer have the slowest tumor growth rate constant (kg), while GEC, SCCHN and TNBC have the fastest kg. BC, NSCLC and OC have the highest tumor killing rate constant. The most important predictors of OS identified by ML approach were tumor kinetic parameters (kg, fraction of drug-sensitive cells, time-delay in immune response), along with baseline disease factors, including hemoglobin (HGBBL), albumin (ALB), and NLR. Decision tree-based algorithms showed the best performance in predicting OR with accuracy above 90%. In addition to tumor kinetic parameters, PD-L1 expression on tumor cells (TC) and ALB were the most important predictors of OR. Conclusions: A combined population PD/ML approach showed good predictions of OS/OR in patients with different cancer types treated with durvalumab. LM, NLR,TBSL and cancer types were found to be important factors for tumor kinetics. In addition to tumor kinetic parameters, HGBBL, ALB, and NLR were found to be important predictors of OS, and TC and ALB were found to be important predictors of OR. These findings could provide a guidance on patient selection in future clinical trials.


2017 ◽  
Vol 2 (2) ◽  
pp. 103-108 ◽  
Author(s):  
Christopher A. Hone ◽  
Nicholas Holmes ◽  
Geoffrey R. Akien ◽  
Richard A. Bourne ◽  
Frans L. Muller

SNAr reaction profiles were generated using an automated reactor, collected in less than 3 hours, and allowed accurate estimation of kinetic parameters.


2016 ◽  
Vol 11 (2) ◽  
pp. 141-148
Author(s):  
J. Satya Eswari

Abstract The kinetic model parameters are estimated for lactic acid production using mixed microbial consortium in batch fermentation by using different optimization methods. For every time interval concentrations are measured and formulated the parameter appraisal delinquent. Cellular progression kinetic model of exponential or logistic was verified for the effect of various substrates and lactic acid production of mixed culture. This paper proposed hybrid algorithm such as nonlinear models in conjunction with differential evolution and kinetic model. The nonlinear regression with graphical method and Nelder-Mead simplex linked kinetic model was compared with the differential evolution for parameter estimation. The optimized kinetic parameters are found to be within the range of experimental conditions for which the model is developed offers a significant enhancement of lactic acid production. From the computational results, the proposed kinetic model linked differential evolution strategy is thus found effective in exploring the input search space and optimizing the kinetic parameters.


Sign in / Sign up

Export Citation Format

Share Document