scholarly journals Removal of Dyes from Wastewater by Ceramic Membrane

2019 ◽  
Vol 70 (5) ◽  
pp. 1715-1719
Author(s):  
Ramy Mohamed Jebir Al-Alawy ◽  
Baker M. Abod ◽  
Firas Hashim Kamar ◽  
Aurelia Cristina Nechifor

The current study aimed to investigate the elimination of dyes from sewerage, using microfiltration membrane mechanism. Three dyes were applied, acid yellow-23, disperse blue -79 and acid orange -7. Experiments were performed with feed concentration (40 -120) ppm, feed flow rate (25 -65) l/h and time (0.25 -1.5) h. The membrane used ceramic membrane, constructed as a candle. It was discovered that water flow diminishes with an elevation in running time, feeding oil concentration and enhancing with elevation in the feed flow rate. In addition, it was determined that the elimination (rejection) rate of dyes enhances with elevation in the flow rate, and the elimination (rejection) rate diminishes as time passes. In cross flow microfiltration, the rejection concentration (concentrate) goes up as time passes, with high feed concentration and flow rate. It was also discovered that the modal infusion concentration declines with high feed concentration and working time. In addition, it was found that product rate goes down as time passes and with high feed concentration. Increasing feed concentration of dyes was associated with an increase in the concentration of rejecting solution. The highest elimination of disperse blue -79, Acid Yellow- 23 and acid orange -7, are 97%, 96.4% and 95.8%, respectively. The maximum recovery percentage of disperse blue - 79, acid yellow- 23 and acid orange -7are 57.7%, 58.5% and 59% respectively.

Author(s):  
NOVALINA BR PURBA ◽  
ABDUL ROHMAN ◽  
SUDIBYO MARTONO

Objective: The objective of this study was to optimize high-performance liquid chromatography (HPLC) method for the determination of acid orange 7 (AO7) and sudan II (SII) in blusher product based on response surface methodology using box behnken design (BBD) approach. Methods: Some factors responsible for HPLC separation including column temperature, mobile phase composition, flow rate were optimized using BBD. The responses evaluated were peak area, retention time, and tailing factor. AO7 and SII in blusher product has different properties, therefore both analytes were analysed using C18 column (Thermo Synergy Gold 250 mm x 4.6 mm i.d.,5 µm) using Shimadzu LC 20AD chromatograph equipped with photo-diode array (PDA) detector at 300-650 nm. The mobile phase used was acetonitrile-water (1:1 v/v), and acetonitrile composition was optimized at 35-50% for separation AO7 (ACN1), and 80-90% for SII (ACN2), delivered at the flow rate of 0.9–1 ml/min, using column temperature at 30-40 °C. Results: BBD showed that separation of AO7 was influenced by the concentration of ACN1, flow rate and column temperature. These factors affected retention time, peak area, and tailing factor with peak area was the most significant. Tailing factor was not significantly affected by each factor, and retention time was slightly effected. Otherwise, Sudan II was affected by all these factors except ACN1. The optimal condition obtained based BBD was ACN1 43%, ACN2 90%, the flow rate of 0.9 ml/min and a column temperature of 40 °C. Conclusion: BBD can be used to get optimum condition for analysis of AO7 and SII in blusher product.


2012 ◽  
Vol 550-553 ◽  
pp. 3004-3007 ◽  
Author(s):  
Verawat Champreda ◽  
David Stuckey ◽  
Apichat Boontawan

The composite polydimethylsiloxane PERVAPTM 4060 was used for separation of methanol/water solutions by using pervaporation technique. The effect of feed concentration, feed temperature, and feed flow rate were investigated for the separation performance. The experimental data showed that increasing of the feed methanol concentration from 0.5 to 10 wt% resulted in an increase in total permeation flux up for to 35 % whilst the separation factor (α) decreased by 85%. The results also showed that increasing operating temperature from 40 to 60 °C caused an increases in methanol permeance up to 130%.


2017 ◽  
Vol 77 (3) ◽  
pp. 597-607 ◽  
Author(s):  
Azadeh Ghorbani ◽  
Abbas Ghassemi

Abstract This study employs theory and experimental data from a laboratory-scale electrodialyzer to predict sodium chloride (NaCl) mass transport and concentration distribution along the electrodialyzer as a function of feed concentration, feed flow rate, applied voltage, and pressure. Moreover, a model was developed to predict the ion removal as a function of driving forces through solving the complete Navier–Stokes, continuity, and steady state Nernst–Planck equations by the finite difference numerical method. The findings of the experiments confirmed that concentration distributions are nonlinear along both the dilute and concentrate compartments. The results also demonstrated that increases in pressure and feed flow rate have a negative effect on salt removal, linear and nonlinear for pressure and flow rate, respectively. In the investigated ranges, higher voltage increased salt removal at a constant feed concentration.


Membranes ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 121
Author(s):  
Guilherme L. Oliveira Neto ◽  
Nívea G. N. Oliveira ◽  
João M. P. Q. Delgado ◽  
Lucas P. C. Nascimento ◽  
Hortência L. F. Magalhães ◽  
...  

Wastewater from the oil industry can be considered a dangerous contaminant for the environment and needs to be treated before disposal or re-use. Currently, membrane separation is one of the most used technologies for the treatment of produced water. Therefore, the present work aims to study the process of separating oily water in a module equipped with a ceramic membrane, based on the Eulerian–Eulerian approach and the Shear-Stress Transport (SST k-ω) turbulence model, using the Ansys Fluent® 15.0. The hydrodynamic behavior of the water/oil mixture in the filtration module was evaluated under different conditions of the mass flow rate of the fluid mixture and oil concentration at the entrance, the diameter of the oil particles, and membrane permeability and porosity. It was found that an increase in the feed mass flow rate from 0.5 to 1.5 kg/s significantly influenced transmembrane pressure, that varied from 33.00 to 221.32 kPa. Besides, it was observed that the particle diameter and porosity of the membranes did not influence the performance of the filtration module; it was also verified that increasing the permeability of the membranes, from 3 × 10−15 to 3 × 10−13 m2, caused transmembrane pressure reduction of 22.77%. The greater the average oil concentration at the permeate (from 0.021 to 0.037 kg/m3) and concentrate (from 1.00 to 1.154 kg/m3) outlets, the higher the average flow rate of oil at the permeate outlets. These results showed that the filter separator has good potential for water/oil separation.


2021 ◽  
Author(s):  
Kyu Min Lee ◽  
Farhad Ein-Mozaffari

Ultrafiltration is one of the most promising membrane technologies for liquid purification due to its high economic efficiency in the industries. However, it has been faced with a critical problem, called fouling. The contaminants in feed solution tend to accumulate on the membrane surface, hindering permeate solution to pass through the porous spaces. Among the various solutions, application of ultrasound has been considered as the most popular method since it does not suffer a disadvantage of downtime and the filtration process does not need to be stopped for the removal of foulants. In this study, control of ceramic membrane fouling by an on-line intermittent ultrasound system was being investigated. The experiment focused on obtaining optimal operating ultrasonic condition. Frequency (20, 28, and 40 kHz), power intensity (1.44, 2.88, and 5.76W/cm2 ), and time interval of intermittent ultrasound (1, 1.5, and 2 minutes) were the parameters of interest. The effect of feed concentration was also analyzed at optimal ultrasonic condition. The quality and flow rate of the permeate streams were monitored for the evaluation of the process performance. The optimal condition of intermittent ultrasound was found at the frequency of 28 kHz and the power intensity of 2.88 W/cm2 ; and then, the application of intermittent ultrasound with short time interval successfully reduced the operating cost of ultrafiltration process while maintaining acceptable quality and flow rate of permeate solution. There was increase in efficiency of intermittent ultrasound at lower feed concentration.


2011 ◽  
Vol 6 (1) ◽  
Author(s):  
Rajasekhar Nadendla ◽  
A. Venu Vinod

The present work aims at finding the best distillation sequence in terms of control properties for the separation of a ternary mixture of n-pentane, n-hexane and n-heptane. The study has been carried out using ASPEN PLUS. The different sequences have been compared for regulatory problem (step change in feed concentration and feed flow rate) and servo problem (step change in product composition). PI controller has been used to control level and composition in the various configurations studied. Auto tuning of the controller has been carried out using relay feedback test. Ziegler–Nichols method was used to calculate controller gain (KI) and integral time (τI) of PI controller. Controller parameters have been fine tuned using these tuning maps.


Membranes ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 254
Author(s):  
Nawras N. Safi ◽  
Salah. S. Ibrahim ◽  
Nasser Zouli ◽  
Hasan Shaker Majdi ◽  
Qusay F. Alsalhy ◽  
...  

The present work has undertaken a meticulous glance on optimizing the performance of an SGMD configuration utilized a porous poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) membrane. This was carried out by conducting a systematic framework for investigating and optimizing the pertinent parameters such as sweeping gas flow rate, feed temperature, feed concentration and feed flow rate on the permeate flux. For this purpose, the Taguchi method and design of experiment techniques were harnessed to statistically determine optimum operational conditions. Besides that, a comprehensive surface and permeation characterization was conducted against the hand-made membranes. Results showcased that the membrane performance was ultimately controlled by the feed temperature and was nearly (~680) % higher when the temperature raised from 45 to 65 °C. Also, to a lesser extent, the system was dominated by the feed flow rate. As the adopted feed flow rate increases (from 0.2 to 0.6 L/min), around 47.5% increment was bestowed on water permeability characteristics. In contra, 34.5% flux decline was witnessed when higher saline feed concentration (100 g/L) was utilized. In the meantime, with raising the sweeping gas flow rate (from 120 to 300 L/h), the distillate was nearly 129% higher. Based on Taguchi design, the maximum permeate flux (17.3 and 17 kg/m2·h) was secured at 35 g/L, 0.4 L/min, 65 °C and 300 L/h, for both commercial and prepared membranes, respectively.


2014 ◽  
Vol 700 ◽  
pp. 466-469
Author(s):  
Ke Ma ◽  
Yu Yun Fu

The pervaporation membranes were prepared by using poly dimethyl siloxane (PDMS) as precursor, toluene as solvent, triethoxy methylsilane as cross linker, dibutyltin dilaurate as catalyst. The PDMS membranes were evaluated with permeation flux and separation factor. The effects of cross linker dosage and the operation parameters during the process of pervaporation were investigated. It was shown from the results that: The selectivity of the membranes increased while the permeation flux first increased and then decreased as the linker dosage increased; the selectivity of the membranes decreased while the permeation flux increased as the feed temperature increased; the selectivity and the permeation flux of the membranes both increased as the feed concentration increased; the selectivity and the flux also both increased as the feed flow rate increased; the selectivity increased while the permeation flux decreased as the separation press increased. When the proportion of the PDMS, solvent, cross linker and catalyst were immobile, The permeation flux and separation factor could be 98mg/(m2·h) and 5.12 when the feed temperature was 60°C, feed concentration was 0.5g/L, feed flow rate was 0.6L/min and separation press was 6KPa.


2021 ◽  
Author(s):  
Kyu Min Lee ◽  
Farhad Ein-Mozaffari

Ultrafiltration is one of the most promising membrane technologies for liquid purification due to its high economic efficiency in the industries. However, it has been faced with a critical problem, called fouling. The contaminants in feed solution tend to accumulate on the membrane surface, hindering permeate solution to pass through the porous spaces. Among the various solutions, application of ultrasound has been considered as the most popular method since it does not suffer a disadvantage of downtime and the filtration process does not need to be stopped for the removal of foulants. In this study, control of ceramic membrane fouling by an on-line intermittent ultrasound system was being investigated. The experiment focused on obtaining optimal operating ultrasonic condition. Frequency (20, 28, and 40 kHz), power intensity (1.44, 2.88, and 5.76W/cm2 ), and time interval of intermittent ultrasound (1, 1.5, and 2 minutes) were the parameters of interest. The effect of feed concentration was also analyzed at optimal ultrasonic condition. The quality and flow rate of the permeate streams were monitored for the evaluation of the process performance. The optimal condition of intermittent ultrasound was found at the frequency of 28 kHz and the power intensity of 2.88 W/cm2 ; and then, the application of intermittent ultrasound with short time interval successfully reduced the operating cost of ultrafiltration process while maintaining acceptable quality and flow rate of permeate solution. There was increase in efficiency of intermittent ultrasound at lower feed concentration.


Sign in / Sign up

Export Citation Format

Share Document