scholarly journals Video-Like Lossless Compression of Data Cube for Big Data Query in Wireless Sensor Networks

2021 ◽  
Vol 20 ◽  
pp. 139-145
Author(s):  
Ray-I Chang ◽  
Yu-Hsien Chu ◽  
Chia-Hui Wang ◽  
Niang-Ying Huang

Wireless Sensor Networks (WSNs) contain many sensor nodes which are placed in chosen spatial area to temporally monitor the environmental changes. As the sensor data is big, it should be well organized and stored in cloud servers to support efficient data query. In this paper, we first adopt the streamed sensor data as "data cubes" to enhance data compression by video-like lossless compression (VLLC). With layered tree structure of WSNs, compression can be done on the aggregation nodes of edge computing. Then, an algorithm is designed to well organize and store these VLLC data cubes into cloud servers to support cost-effect big data query with parallel processing. Our experiments are tested by real-world sensor data. Results show that our method can save 94% construction time and 79% storage space to achieve the same retrieval time in data query when compared with a well-known database MySQL

Author(s):  
Cong Gao ◽  
Ping Yang ◽  
Yanping Chen ◽  
Zhongmin Wang ◽  
Yue Wang

AbstractWith large deployment of wireless sensor networks, anomaly detection for sensor data is becoming increasingly important in various fields. As a vital data form of sensor data, time series has three main types of anomaly: point anomaly, pattern anomaly, and sequence anomaly. In production environments, the analysis of pattern anomaly is the most rewarding one. However, the traditional processing model cloud computing is crippled in front of large amount of widely distributed data. This paper presents an edge-cloud collaboration architecture for pattern anomaly detection of time series. A task migration algorithm is developed to alleviate the problem of backlogged detection tasks at edge node. Besides, the detection tasks related to long-term correlation and short-term correlation in time series are allocated to cloud and edge node, respectively. A multi-dimensional feature representation scheme is devised to conduct efficient dimension reduction. Two key components of the feature representation trend identification and feature point extraction are elaborated. Based on the result of feature representation, pattern anomaly detection is performed with an improved kernel density estimation method. Finally, extensive experiments are conducted with synthetic data sets and real-world data sets.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1782
Author(s):  
Yulong Deng ◽  
Chong Han ◽  
Jian Guo ◽  
Lijuan Sun

Data missing is a common problem in wireless sensor networks. Currently, to ensure the performance of data processing, making imputation for the missing data is the most common method before getting into sensor data analysis. In this paper, the temporal and spatial nearest neighbor values-based missing data imputation (TSNN), a new imputation based on the temporal and spatial nearest neighbor values has been presented. First, four nearest neighbor values have been defined from the perspective of space and time dimensions as well as the geometrical and data distances, which are the bases of the algorithm that help to exploit the correlations among sensor data on the nodes with the regression tool. Next, the algorithm has been elaborated as well as two parameters, the best number of neighbors and spatial–temporal coefficient. Finally, the algorithm has been tested on an indoor and an outdoor wireless sensor network, and the result shows that TSNN is able to improve the accuracy of imputation and increase the number of cases that can be imputed effectively.


2018 ◽  
Vol 7 (2.26) ◽  
pp. 25
Author(s):  
E Ramya ◽  
R Gobinath

Data mining plays an important role in analysis of data in modern sensor networks. A sensor network is greatly constrained by the various challenges facing a modern Wireless Sensor Network. This survey paper focuses on basic idea about the algorithms and measurements taken by the Researchers in the area of Wireless Sensor Network with Health Care. This survey also catego-ries various constraints in Wireless Body Area Sensor Networks data and finds the best suitable techniques for analysing the Sensor Data. Due to resource constraints and dynamic topology, the quality of service is facing a challenging issue in Wireless Sensor Networks. In this paper, we review the quality of service parameters with respect to protocols, algorithms and Simulations. 


2013 ◽  
Vol 347-350 ◽  
pp. 1068-1073
Author(s):  
Wei Min Qi ◽  
Jie Xiao

In order to provide efficient and suitable services for users in a ubiquitous computing environment, many kinds of context information technologies have been researched. Wireless sensor networks are among the most popular technologies providing such information. Therefore, it is very important to guarantee the reliability of sensor data gathered from wireless sensor networks. However there are several factors associated with faulty sensor readings which make sensor readings unreliable. The research put forward classifying faulty sensor readings into sensor faults and measurement errors, then propose a novel in-network data calibration algorithm which includes adaptive fault checking, measurement error elimination and data refinement. The proposed algorithm eliminates faulty readings as well as refines normal sensor readings and increase reliability. The simulation study shows that the in-network data calibration algorithm is highly reliable and its network overhead is very low compared to previous works.


Author(s):  
Osman Salem ◽  
Alexey Guerassimov ◽  
Ahmed Mehaoua ◽  
Anthony Marcus ◽  
Borko Furht

This paper details the architecture and describes the preliminary experimentation with the proposed framework for anomaly detection in medical wireless body area networks for ubiquitous patient and healthcare monitoring. The architecture integrates novel data mining and machine learning algorithms with modern sensor fusion techniques. Knowing wireless sensor networks are prone to failures resulting from their limitations (i.e. limited energy resources and computational power), using this framework, the authors can distinguish between irregular variations in the physiological parameters of the monitored patient and faulty sensor data, to ensure reliable operations and real time global monitoring from smart devices. Sensor nodes are used to measure characteristics of the patient and the sensed data is stored on the local processing unit. Authorized users may access this patient data remotely as long as they maintain connectivity with their application enabled smart device. Anomalous or faulty measurement data resulting from damaged sensor nodes or caused by malicious external parties may lead to misdiagnosis or even death for patients. The authors' application uses a Support Vector Machine to classify abnormal instances in the incoming sensor data. If found, the authors apply a periodically rebuilt, regressive prediction model to the abnormal instance and determine if the patient is entering a critical state or if a sensor is reporting faulty readings. Using real patient data in our experiments, the results validate the robustness of our proposed framework. The authors further discuss the experimental analysis with the proposed approach which shows that it is quickly able to identify sensor anomalies and compared with several other algorithms, it maintains a higher true positive and lower false negative rate.


2018 ◽  
Vol 14 (11) ◽  
pp. 155014771881130 ◽  
Author(s):  
Jaanus Kaugerand ◽  
Johannes Ehala ◽  
Leo Mõtus ◽  
Jürgo-Sören Preden

This article introduces a time-selective strategy for enhancing temporal consistency of input data for multi-sensor data fusion for in-network data processing in ad hoc wireless sensor networks. Detecting and handling complex time-variable (real-time) situations require methodical consideration of temporal aspects, especially in ad hoc wireless sensor network with distributed asynchronous and autonomous nodes. For example, assigning processing intervals of network nodes, defining validity and simultaneity requirements for data items, determining the size of memory required for buffering the data streams produced by ad hoc nodes and other relevant aspects. The data streams produced periodically and sometimes intermittently by sensor nodes arrive to the fusion nodes with variable delays, which results in sporadic temporal order of inputs. Using data from individual nodes in the order of arrival (i.e. freshest data first) does not, in all cases, yield the optimal results in terms of data temporal consistency and fusion accuracy. We propose time-selective data fusion strategy, which combines temporal alignment, temporal constraints and a method for computing delay of sensor readings, to allow fusion node to select the temporally compatible data from received streams. A real-world experiment (moving vehicles in urban environment) for validation of the strategy demonstrates significant improvement of the accuracy of fusion results.


2012 ◽  
Vol 35 (11) ◽  
pp. 2403
Author(s):  
Yan-Qing ZHANG ◽  
Jin-Bao LI ◽  
Long-Jiang GUO ◽  
Jing-Hua ZHU

Sign in / Sign up

Export Citation Format

Share Document