scholarly journals Mechanical Properties of Electro-Discharge-Sintered Porous Titanium Implants

2006 ◽  
Vol 16 (3) ◽  
pp. 173-177
Author(s):  
C.Y. Hyun ◽  
J.K. Huh ◽  
W.H. Lee
2007 ◽  
Vol 7 (4) ◽  
pp. 435-443 ◽  
Author(s):  
Mitsuru Takemoto ◽  
Shunsuke Fujibayashi ◽  
Masashi Neo ◽  
Kazutaka So ◽  
Norihiro Akiyama ◽  
...  

Object Porous biomaterials with adequate pore structure and appropriate mechanical properties are expected to provide a new generation of devices for spinal interbody fusion because of their potential to eliminate bone grafting. The purpose of this study was to evaluate the fusion characteristics of porous bioactive titanium implants using a canine anterior interbody fusion model. Methods Porous titanium implants sintered with volatile spacer particles (porosity 50%, average pore size 303 μm, compressive strength 116.3 MPa) were subjected to chemical and thermal treatments that give a bioactive microporous titania layer on the titanium surface (BT implant). Ten adult female beagle dogs underwent anterior lumbar interbody fusion at L6–7 using either BT implants or nontreated (NT) implants, followed by posterior spinous process wiring and facet screw fixation. Radiographic evaluations were performed at 1, 2, and 3 months postoperatively using X-ray fluoroscopy. Animals were killed 3 months postoperatively, and fusion status was evaluated by manual palpation and histological examination. Results Interbody fusion was confirmed in all five dogs in the BT group and three of five dogs in the NT group. Histological examination demonstrated a large amount of new bone formation with marrowlike tissue in the BT implants and primarily fibrous tissue formation in the NT implants. Conclusions Bioactive treatment effectively enhanced the fusion ability of the porous titanium implants. These findings, coupled with the appropriate mechanical properties in load-bearing conditions, indicate that these porous bioactive titanium implants represent a new generation of biomaterial for spinal interbody fusion.


Metals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 995 ◽  
Author(s):  
Ana M. Beltrán ◽  
Ana Civantos ◽  
Cristina Dominguez-Trujillo ◽  
Rocío Moriche ◽  
José A. Rodríguez-Ortiz ◽  
...  

Here, titanium porous substrates were fabricated by a space holder technique. The relationship between microstructural characteristics (pore equivalent diameter, mean free-path between pores, roughness and contact surface), mechanical properties (Young’s modulus, yield strength and dynamic micro-hardness) and bacterial behavior are discussed. The bacterial strains evaluated are often found on dental implants: Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. The colony-forming units increased with the size of the spacer for both types of studied strains. An antibiofouling synthetic coating based on a sulfonated polyetheretherketone polymer revealed an effective chemical surface modification for inhibiting MRSA adhesion and growth. These findings collectively suggest that porous titanium implants designed with a pore size of 100–200 µm can be considered most suitable, assuring the best biomechanical and bifunctional anti-bacterial properties.


2014 ◽  
Vol 52 (3) ◽  
pp. 203-209 ◽  
Author(s):  
San Kang ◽  
Ji Woon Lee ◽  
Soong Keun Hyun ◽  
Byong Pil Lee ◽  
Myoung Gyun Kim ◽  
...  

2017 ◽  
Vol 58 ◽  
pp. 550-560 ◽  
Author(s):  
Anish Shivaram ◽  
Susmita Bose ◽  
Amit Bandyopadhyay

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 461
Author(s):  
Paula Navarro ◽  
Alberto Olmo ◽  
Mercè Giner ◽  
Marleny Rodríguez-Albelo ◽  
Ángel Rodríguez ◽  
...  

The chemical composition and surface topography of titanium implants are essential to improve implant osseointegration. The present work studies a non-invasive alternative of electrical impedance spectroscopy for the characterization of the macroporosity inherent to the manufacturing process and the effect of the surface treatment with femtosecond laser of titanium discs. Osteoblasts cell culture growths on the titanium surfaces of the laser-treated discs were also studied with this method. The measurements obtained showed that the femtosecond laser treatment of the samples and cell culture produced a significant increase (around 50%) in the absolute value of the electrical impedance module, which could be characterized in a wide range of frequencies (being more relevant at 500 MHz). Results have revealed the potential of this measurement technique, in terms of advantages, in comparison to tiresome and expensive techniques, allowing semi-quantitatively relating impedance measurements to porosity content, as well as detecting the effect of surface modification, generated by laser treatment and cell culture.


2015 ◽  
Vol 29 ◽  
pp. 141-154 ◽  
Author(s):  
J van der Stok ◽  
◽  
MKE Koolen ◽  
MPM de Maat ◽  
S Amin Yavari ◽  
...  

2014 ◽  
Vol 57 ◽  
pp. 712-718 ◽  
Author(s):  
Byounggab Lee ◽  
Taekyung Lee ◽  
Yongmoon Lee ◽  
Dong Jun Lee ◽  
Jiwon Jeong ◽  
...  

2018 ◽  
Vol 6 (15) ◽  
pp. 2274-2288 ◽  
Author(s):  
Xiao-Fan Hu ◽  
Ya-Fei Feng ◽  
Geng Xiang ◽  
Wei Lei ◽  
Lin Wang

PLGA-coating on 3D-printed porous titanium implants promoted the angiogenesis and osteointegration at bone-implant interface in diabetes by releasing lactic acid.


Bioceramics ◽  
1991 ◽  
pp. 335-342
Author(s):  
A. Moroni ◽  
V. Pezzuto ◽  
G. Rollo ◽  
F. Gottsauner-Wolf ◽  
V. Caja ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document