Assessment of Water Resources Vulnerability Index by Nation

2014 ◽  
Vol 47 (2) ◽  
pp. 183-194 ◽  
Author(s):  
Kwyang Jae Won ◽  
Eun Sung Chung ◽  
Yeon Joo Kim ◽  
Il Pyo Hong
2019 ◽  
Vol 23 ◽  
pp. 19-31 ◽  
Author(s):  
Paula Williams ◽  
Andrew Kliskey ◽  
Molly McCarthy ◽  
Richard Lammers ◽  
Lilian Alessa ◽  
...  

2016 ◽  
Vol 162 ◽  
pp. 476-485 ◽  
Author(s):  
Vasilis Kanakoudis ◽  
Stavroula Tsitsifli ◽  
Anastasia Papadopoulou ◽  
Barbara Cencur Curk ◽  
Barbara Karleusa

2021 ◽  
Vol 17 (10) ◽  
Author(s):  
Kanga Idé Soumaila ◽  
Naimi Mustapha ◽  
Chikhaoui Mohamed

Water resources are disproportionately distributed, and more and more problems related to this precious resource are being reported around the world due to anthropogenic pressures and global environmental changes. This paper focuses on assessing the vulnerability of water resources in an integrated way, by taking into account hydrological, environmental, socio-economic and pollution factors, in order to delineate sensitive areas of water resources under a geographic information system. The framework for assessing the water resources vulnerability in the Fès, Meknès, and Ifrane perimeters was based on a participatory approach through a survey. The data collected on the identified factors are then processed under ArcGIS tool to aggregate the normalized value into a water resources vulnerability index. The result shows that the degree of vulnerability of water resources in most of the study area is considered to be at the "threshold" to "non-vulnerable". However, three (3) main areas were considered to be "moderately vulnerable" to "highly vulnerable" precisely in the South of the city of Meknes (Zone 1), from the West of the city of Fès (Zone 2), and finally the Dayet Ifrah area (Zone 3). The sensitivity analysis showed that five factors have more impact on the overall water resources vulnerability map: topography, poverty, water withdrawal, population density, and access to drinking water. The result of this study could help integrated water resources management planners take action to improve the overall water quantity and quality in the area, and it can be extended to a larger scale like regional, national or cross-country.


2020 ◽  
Vol 12 (10) ◽  
pp. 4102 ◽  
Author(s):  
Denis Macharia ◽  
Erneus Kaijage ◽  
Leif Kindberg ◽  
Grace Koech ◽  
Lilian Ndungu ◽  
...  

Increasing climate variability and change coupled with steady population growth is threatening water resources and livelihoods of communities living in the Wami-Ruvu and Rufiji basins in Tanzania. These basins are host to three large urban centers, namely Dar es Salaam, Dodoma and Morogoro, with a combined total of more than 7 million people. Increased demand for ecosystem services from the available surface water resources and a decreasing supply of clean and safe water are exacerbating the vulnerability of communities in these basins. Several studies have analyzed climate projects in the two basins but little attention has been paid to identify locations that have vulnerable communities in a spatially-explicit form. To address this gap, we worked with stakeholders from national and local government agencies, basin water boards and the Water Resources Integration Development Initiative (WARIDI) project funded by USAID to map the vulnerability of communities to climate variability and change in the two basins. A generalized methodology for mapping social vulnerability to climate change was used to integrate biophysical and socioeconomic indicators of exposure, sensitivity and adaptive capacity and produced climate vulnerability index maps. Our analysis identified vulnerability “hotspots” where communities are at a greater risk from climate stressors. The results from this study were used to identify priority sites and adaptation measures for the implementation of resilience building interventions and to train local government agencies and communities on climate change adaptation measures in the two basins.


2020 ◽  
Vol 6 (4) ◽  
pp. 437-462
Author(s):  
C. Spence ◽  
M. Norris ◽  
G. Bickerton ◽  
B.R. Bonsal ◽  
R. Brua ◽  
...  

This study developed and applied a framework for assessing the vulnerability of pan-Canadian water resources to permafrost thaw. The national-scale work addresses a key, but neglected, information gap, as previous research has focused on small scale physical processes and circumpolar trends. The framework was applied to develop the Canadian Water Resources Vulnerability Index to Permafrost Thaw (CWRVIPT) and map the index across the Canadian North. The CWRVIPT is a linearly additive index of permafrost, terrain, disturbance, and climatic conditions and stressors that influence water budgets and aquatic chemistry. Initial results imply water resources in the western Northwest Territories and Hudson Bay Lowlands are most vulnerable to permafrost thaw; however, water resources on Banks, Victoria and Baffin Islands are also relatively vulnerable. Although terrain and permafrost sub-indices are the largest component of the CWRVIPT across a wide swath from the Mackenzie River Delta to the Hudson Bay Lowlands, the climate sub-index is most important farther north over parts of the southern portion of the Arctic Archipelago. The index can be used to identify areas of water resource vulnerability on which to focus observation and research in the Canadian North.


Sign in / Sign up

Export Citation Format

Share Document