DIABETIC RETINOPATHY DIAGNOSIS USING KERNEL FUZZY C MEANS WITH CONVOLUTIONAL NEURAL NETWORK BASED RESIDUAL MODEL

2021 ◽  
Vol 10 (1) ◽  
pp. 413-422
Author(s):  
K. K. Yazhini ◽  
D. Loganathan

Presently, Internet of Things (IoT) becomes popular owing to diverse its application scenarios like transports, building, healthcare, etc. This study introduces an efficient IoT based diabetic retinopathy (DR) diagnosis model using Kernel Fuzzy C Means Segmentation and Residual Network. The proposed model involves a sequence of processes namely image acquisition, pre-processing, segmentation, feature extraction and classification. At the initial stage, retinal fundus image acquisition takes place which captures the retina image of the patient using head mounted camera. Next, kernel fuzzy c-means (KFCM) based segmentation process is applied to identify the diseased area. Then, the features are extracted using convolutional neural network (CNN) based residual network (ResNet) model. Finally, softmax function is employed to carry out the classification task. The validation of the presented model takes place using Kaggle DR dataset and the experimental results verified the superior performance of the presented model. The obtained results indicated that the KFCM-CNNR model has resulted to a maximum accuracy of 96.89%, sensitivity of 93.12% and specificity of 98.16%.

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5549
Author(s):  
Hyun Kyu Shin ◽  
Yong Han Ahn ◽  
Sang Hyo Lee ◽  
Ha Young Kim

There has been an increase in the deterioration of buildings and infrastructure in dense urban regions, and several defects in the structures are being exposed. To ensure the effective diagnosis of building conditions, vision-based automatic damage recognition techniques have been developed. However, conventional image processing techniques have some limitations in real-world situations owing to their manual feature extraction approach. To overcome these limitations, a convolutional neural network-based image recognition technique was adopted in this study, and a convolution-based concrete multi-damage recognition neural network (CMDnet) was developed. The image datasets consisted of 1981 types of concrete surface damages, including surface cracks, rebar exposure and delamination, as well as intact. Furthermore, it was experimentally demonstrated that the proposed model could accurately classify the damage types. The results obtained in this study reveal that the proposed model can recognize the different damage types from digital images of the surfaces of concrete structures. The trained CMDnet demonstrated a damage-detection accuracy of 98.9%. Moreover, the proposed model could be applied in automatic damage detection networks to achieve superior performance with regard to concrete surface damage detection and recognition, as well as accelerating efficient damage identification during the diagnosis of deteriorating structures used in civil engineering applications.


Author(s):  
Juan Elisha Widyaya ◽  
Setia Budi

Diabetic retinopathy (DR) is eye diseases caused by diabetic mellitus or sugar diseases. If DR is detected in early stage, the blindness that follow can be prevented. Ophthalmologist or eye clinician usually decide the stage of DR from retinal fundus images. Careful examination of retinal fundus images is time consuming task and require experienced clinicians or ophthalmologist but a computer which has been trained to recognize the DR stages can diagnose and give result in real-time manner. One approach of algorithm to train a computer to recognize an image is deep learning Convolutional Neural Network (CNN). CNN allows a computer to learn the features of an image, in our case is retinal fundus image, automatically. Preprocessing is usually done before a CNN model is trained. In this study, four preprocessing were carried out. Of the four preprocessing tested, preprocessing with CLAHE and unsharp masking on the green channel of the retinal fundus image give the best results with an accuracy of 79.79%, 82.97% precision, 74.64% recall, and 95.81% AUC. The CNN architecture used is Inception v3.


Author(s):  
Manaswini Jena ◽  
Smita Prava Mishra ◽  
Debahuti Mishra

Background: Diabetic retinopathy is one of the complexities of diabetics and a major cause of vision loss worldwide which come into sight due to prolonged diabetes. For the automatic detection of diabetic retinopathy through fundus images several technical approaches have been proposed. The visual information processing by convolutional neural network makes itself more suitable due to its spatial arrangement of units. Convolutional Neural Networks are at their peak of development and best results can be gained by proper use of the technique. The local connectivity, parameter sharing and pooling of hidden units are advantageous for various predictions. Objective: Objective of this paper is to design a model for classification of diabetic retinopathy. Method: A fully convolutional neural network model is developed to classify the diseased and healthy fundus images. Here, proposed neural network consists of six convolutional layers along with rectified linear unit activations and max pooling layers. The absence of fully connected layer reduces the computational complexity of the model and trains faster as compared to traditional convolutional neural network models. Result and Conclusion: The validation of the proposed model is accomplished by training it with a publicly available High-Resolution Fundus image database. The model is also compared with various existing state-of-the-art methods which show competitive result as compared to these models. A behavioural study of different parameters of the network model is represented. The intelligence of our model lies in its ability to re-tune weight to overcome outliers encountered in future. The proposed model works well with satisfactory performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yonghao Chen

Convolution neural network has become a hot research topic in the field of computer vision because of its superior performance in image classification. Based on the above background, the purpose of this paper is to analyze sports sequence images based on convolutional neural network. In view of the low detection rate of single-frame and the complexity of multiframe detection algorithms, this paper proposes a new algorithm combining single-frame detection and multiframe detection, so as to improve the detection rate of small targets and reduce the detection time. Based on the traditional residual network, an improved, multiscale, residual network is proposed in this paper. The network structure enables the convolution layer to “observe” data from different scales and obtain more abundant input features. Moreover, the depth of the network is reduced, the gradient vanishing problem is effectively suppressed, and the training difficulty is reduced. Finally, the ensemble learning method of relative majority voting is used to reduce the classification error rate of the network to 3.99% on CIFAR-10, and the error rate is reduced by 3% compared with the original residual neural network.


2021 ◽  
Vol 11 (6) ◽  
pp. 2838
Author(s):  
Nikitha Johnsirani Venkatesan ◽  
Dong Ryeol Shin ◽  
Choon Sung Nam

In the pharmaceutical field, early detection of lung nodules is indispensable for increasing patient survival. We can enhance the quality of the medical images by intensifying the radiation dose. High radiation dose provokes cancer, which forces experts to use limited radiation. Using abrupt radiation generates noise in CT scans. We propose an optimal Convolutional Neural Network model in which Gaussian noise is removed for better classification and increased training accuracy. Experimental demonstration on the LUNA16 dataset of size 160 GB shows that our proposed method exhibit superior results. Classification accuracy, specificity, sensitivity, Precision, Recall, F1 measurement, and area under the ROC curve (AUC) of the model performance are taken as evaluation metrics. We conducted a performance comparison of our proposed model on numerous platforms, like Apache Spark, GPU, and CPU, to depreciate the training time without compromising the accuracy percentage. Our results show that Apache Spark, integrated with a deep learning framework, is suitable for parallel training computation with high accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2648
Author(s):  
Muhammad Aamir ◽  
Tariq Ali ◽  
Muhammad Irfan ◽  
Ahmad Shaf ◽  
Muhammad Zeeshan Azam ◽  
...  

Natural disasters not only disturb the human ecological system but also destroy the properties and critical infrastructures of human societies and even lead to permanent change in the ecosystem. Disaster can be caused by naturally occurring events such as earthquakes, cyclones, floods, and wildfires. Many deep learning techniques have been applied by various researchers to detect and classify natural disasters to overcome losses in ecosystems, but detection of natural disasters still faces issues due to the complex and imbalanced structures of images. To tackle this problem, we propose a multilayered deep convolutional neural network. The proposed model works in two blocks: Block-I convolutional neural network (B-I CNN), for detection and occurrence of disasters, and Block-II convolutional neural network (B-II CNN), for classification of natural disaster intensity types with different filters and parameters. The model is tested on 4428 natural images and performance is calculated and expressed as different statistical values: sensitivity (SE), 97.54%; specificity (SP), 98.22%; accuracy rate (AR), 99.92%; precision (PRE), 97.79%; and F1-score (F1), 97.97%. The overall accuracy for the whole model is 99.92%, which is competitive and comparable with state-of-the-art algorithms.


Entropy ◽  
2021 ◽  
Vol 23 (7) ◽  
pp. 816
Author(s):  
Pingping Liu ◽  
Xiaokang Yang ◽  
Baixin Jin ◽  
Qiuzhan Zhou

Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM), and it is necessary to diagnose DR in the early stages of treatment. With the rapid development of convolutional neural networks in the field of image processing, deep learning methods have achieved great success in the field of medical image processing. Various medical lesion detection systems have been proposed to detect fundus lesions. At present, in the image classification process of diabetic retinopathy, the fine-grained properties of the diseased image are ignored and most of the retinopathy image data sets have serious uneven distribution problems, which limits the ability of the network to predict the classification of lesions to a large extent. We propose a new non-homologous bilinear pooling convolutional neural network model and combine it with the attention mechanism to further improve the network’s ability to extract specific features of the image. The experimental results show that, compared with the most popular fundus image classification models, the network model we proposed can greatly improve the prediction accuracy of the network while maintaining computational efficiency.


Sign in / Sign up

Export Citation Format

Share Document