RECURSIVE FORMULAE FOR DROPLETS TRANSIENT HEATING AND EVAPORATION MODELS VIA A COMBINED METHOD OF INTEGRAL TRANSFORMS

2021 ◽  
Vol 10 (11) ◽  
pp. 3363-3380
Author(s):  
Kwassi Anani

The transient heating of a spherical droplet at rest in a hot gas environment, is analysed when the temperature distribution is initially assumed to be non uniform inside the droplet. A combined method of integral transforms, namely the classical Fourier cosine transform together with the unilateral Laplace transform, is used in solving the resulting initial-boundary value problem, stated in the dimensionless form. Explicit solutions of the problem are first obtained in the Laplace domain, and then analytical approximations in short time limits (timessteps) are derived for the droplet internal and surface temperature fields. The analytical approximation for the droplet internal temperature during the time step is proven to be highly accurate, while the innovative recursive formula obtained for the droplet surface temperature may lead to computationally efficient droplets and sprays vaporization models.

Author(s):  
Karen A. Flack ◽  
Geoffrey B. Smith

Surface temperature fields and statistics are presented for the case of sub-surface grid-generated turbulence impacting an air/water interface. Temperature measurements are obtained with an infrared camera, sensitive in the 3–5 micron wavelength range. Results indicate that increased grid oscillation frequencies, and shallower grid depths, lead to increased surface mixing, yielding lower values of RMS temperature. Non-dimensionalization of the RMS temperatures using the difference in the average surface and the bulk fluid temperatures, collapses the data obtained for different grid depths and oscillation frequencies. This scaling is related to the thermal boundary layer thickness. The results are compared to the baseline case of turbulence due to evaporative convection without an oscillating grid.


Author(s):  
Angela Wu ◽  
Seunghwan Keum ◽  
Volker Sick

In this study, the effects of the thermal boundary conditions at the engine walls on the predictions of Large-Eddy Simulations (LES) of a motored Internal Combustion Engine (ICE) were examined. Two thermal boundary condition cases were simulated. One case used a fixed, uniform wall temperature, which is typically used in conventional LES modeling of ICEs. The second case utilized a Conjugate Heat Transfer (CHT) modeling approach to obtain temporally and spatially varying wall temperature. The CHT approach solves the coupled heat transfer problem between fluid and solid domains. The CHT case included the solid valves, piston, cylinder head, cylinder liner, valve seats, and spark plug geometries. The simulations were validated with measured bulk flow, near-wall flow, surface temperature, and surface heat flux. The LES quality of both simulations was also discussed. The CHT results show substantial spatial, temporal, and cyclic variability of the wall heat transfer. The surface temperature dynamics obtained from the CHT model compared well with measurements during the compression stroke, but the absolute magnitude was 5 K (or 1.4%) off and the prediction of the drop in temperature after top dead center suffered from temporal resolution limitations. Differences in the predicted flow and temperature fields between the uniform surface temperature and CHT simulations show the impact of the surface temperature on bulk behavior.


2016 ◽  
Vol 20 (3) ◽  
pp. 1211-1223 ◽  
Author(s):  
Klaus Haslinger ◽  
Annett Bartsch

Abstract. A new approach for the construction of high-resolution gridded fields of reference evapotranspiration for the Austrian domain on a daily time step is presented. Gridded data of minimum and maximum temperatures are used to estimate reference evapotranspiration based on the formulation of Hargreaves. The calibration constant in the Hargreaves equation is recalibrated to the Penman–Monteith equation in a monthly and station-wise assessment. This ensures, on one hand, eliminated biases of the Hargreaves approach compared to the formulation of Penman–Monteith and, on the other hand, also reduced root mean square errors and relative errors on a daily timescale. The resulting new calibration parameters are interpolated over time to a daily temporal resolution for a standard year of 365 days. The overall novelty of the approach is the use of surface elevation as the only predictor to estimate the recalibrated Hargreaves parameter in space. A third-order polynomial is fitted to the recalibrated parameters against elevation at every station which yields a statistical model for assessing these new parameters in space by using the underlying digital elevation model of the temperature fields. With these newly calibrated parameters for every day of year and every grid point, the Hargreaves method is applied to the temperature fields, yielding reference evapotranspiration for the entire grid and time period from 1961–2013. This approach is opening opportunities to create high-resolution reference evapotranspiration fields based only temperature observations, but being as close as possible to the estimates of the Penman–Monteith approach.


Measurement ◽  
2017 ◽  
Vol 101 ◽  
pp. 72-80 ◽  
Author(s):  
Romain Monier ◽  
François Thumerel ◽  
Julien Chapuis ◽  
Fabien Soulié ◽  
Cyril Bordreuil

Sign in / Sign up

Export Citation Format

Share Document