Chemical composition of Azadirachta indica A. Juss and Ricinus communis Linn. seed oils growing in Marigat, Baringo County, Kenya

Author(s):  
Ann Kiplagat Jepkorir ◽  
Charles Maina Irungu ◽  
Philip Bett Kendagor

All parts of A. indica (neem) and R. communis (castor) plants have mostly been used as natural remedies in the control and treatment of several ailments, control of pests and insects, animal feeds and production of industrial products globally. The seed oils of A. indica and R. communis are known to have antidiabetic, anti-helminthic, antifertility, antioxidant, antibacterial, anti-inflammatory, anti-cancer, insecticidal and mosquitocidal activity. This study reports for the first time the chemical composition of A. indica and R. communis seed oils from Marigat, Baringo County, Kenya. Seed oils of A. indica and R. communis were   extracted from mature dried seeds through cold pressing and boiling respectively and chemical composition determined using Gas Chromatography (GC)-Mass Spectrometry (MS).  The constituents of both seed oils were dominated by saturated and unsaturated fatty acids, cyclic esters and methyl esters. The predominant constituents of R. communis were (Z)-6-Octadecenoic acid (37.33%), Ricinoleic acid (30.22%) and 13-Hexyloxacyclotridec-10-en-2-one (26.67%) while those of A. indica were 2-hexyl-1-decanol (30.97%), Octadecanoic acid (29.69%) and Oxalic acid, 6-ethyloct-3-yl ethyl ester (15.55%). Oils contained Hexadecanoic acid and Octadecanoic acid which are used in the manufacture of several products such as candles, soaps, lotions, perfumes and cosmetics. Octadecenoic acid is important in control of human diseases and Ricinoleic acid in production of alkyd resins for surface coating and biofuel.  From the results, A. indica and R. communis seed oils constituents have potential in the agricultural, industrial, comestics and pharmaceutical sectors but require further fractionation to isolate the bioactive compounds.

2019 ◽  
Vol 20 (1) ◽  
pp. 237
Author(s):  
Mohammad Haniff Ahmad ◽  
Wan Asma Ibrahim ◽  
Jahirah Sazali ◽  
Izirwan Izhab ◽  
Zulkafli Hassan

Castor oil is an oil derived from castor seed from a plant Ricinus communis. The versatility of castor oil is highly attributed by 12-hydroxy-9-octadecenoic acid (ricinoleic acid) and its functional group. It is an oil that cannot be consumed by a human. However, castor oil actually can be used to produce many valuable products such as chemicals, paint, and cosmetics due to its unique characteristic which contains a high percentage of ricinoleic acid that helps in producing many valuable products. The utilization of vegetable oils is currently in the highlight of the chemical industry, as they are one of the most important renewable resources due to their universal availability, inherent biodegradability, low price, and eco-friendly. Therefore, the main aim of this paper is to focus on the thermal cracking of castor oil with Zeolite ZSM-5 as the catalyst generates products consisting alcohol, methyl esters and fatty acids which are valuable raw materials for industries. The background, characteristics, composition, properties and industrial application of castor oil have also been discussed. The important properties and various applications of castor oil which can be obtained from toxic seeds have much greater potential than other available vegetable oils.


2010 ◽  
Vol 5 (12) ◽  
pp. 1934578X1000501 ◽  
Author(s):  
Chi-Cheng Yu ◽  
Hsiao-Wei Chen ◽  
Mao-Jing Chen ◽  
Yu-Ching Chang ◽  
Shih-Chang Chien ◽  
...  

The present study investigated the chemical composition of Isochrysis galbana Parke, a marine microalga which is widely used as a feedstock in aquaculture. From gas chromatography/mass spectrometric analysis the mono-sugar compositions of I. galbana were 2.1% fucose, 2.5% rhamnose, 2.7% arabinose, 8.5% xylose, 15.7% mannose, 32.7% galactose and 35.8% glucose. The polysaccharides of I. galbana were able to induce prointerleukin-1β (pro-IL-1β) protein expression within murine macrophages. Furthermore, five kinds of chlorophyll and one sterol were separated from the ethanolic extracts, including pheophorbide-a, ethyl pheophorbide-a, 10 S-10-hydroxypheophytin-a, 10 R-10-hydroxypheophytin-a, (132- R)-pheophytin-a, and brassicasterol. In addition, the major soluble components of the ethanol /n-hexane extract were 9-octadecenoic acid ( E) (38.4%), hexadecanoic acid (23.3%), tetradecanoic acid (15.7%), and octadecanoic acid (7.2%), but only a few polyunsaturated fatty acids were found, such as 9,12,15-octadecatrienoic acid (1.9%), 9,12-octadecadienoic acid ( Z, Z) (3.4%), and docosahexaenoic acid (0.2%). This is the first occasion that polysaccharides from I. galbana have been demonstrated to exert immunomodulatory properties by the induction of IL-1 within macrophages.


2003 ◽  
Vol 58 (7-8) ◽  
pp. 502-504 ◽  
Author(s):  
Ahmet C. Gören ◽  
Gökhan Bilsel ◽  
Mehmet Altun ◽  
Fatih Satıl

Abstract The chemical composition of fatty acid methyl esters (FAMEs) from seeds of S. thymbra and S. cuneifolia were analyzed by GC/MS. 7 FAMEs were identified from the seeds of S. thymbra mainly as 9-octadecenoic acid methyl ester (43.9%), hexadecanoic acid methyl ester (11.4%), 9,12,15-octadecatrienoic acid methyl ester (Z,Z,Z) (30.2%), and octadecanoic acid methyl ester (14.1%), while from the seed of S. cuneifolia 10 FAMEs were obtained with the main components, similar to S. thymbra. These were identified as 9-octadecenoic acid methyl ester (10.1%), hexadecanoic acid methyl ester (methyl palmitate, 34.6%), 9,12,15-octadecatrienoic acid methyl ester (Z,Z,Z) (6.3%) and octadecanoic acid methyl ester (1.8%).


2021 ◽  
Vol 4 (1) ◽  
pp. 52-67
Author(s):  
Banyaladzi Doctor Paphane ◽  
Bonang Nkoane ◽  
Olayinka Adebisi Oyetunji

Croton megalobotrys and Ricinus cummunis plants produce high-quality non-edible seed oils at relatively high quantities of 39.65 ± 0.06 % w/w to 53.74 ± 0.04 % w/w. The Iodine values of 85.97 ± 1.62 g I2/100 g to 96.51 ± 1.31 g I2/100 g; the low acid values of 0.96 ± 0.05 mg KOH/g to 5.31 ± 0.76 mg KOH/g; and high saponification values of 139.65 ± 1.06 mg KOH/g to 153.01 ± 1.67 mg KOH/g show that these seed oils can be useful feedstocks in the petroleum, soap, and cosmetics industries. GC-MS results revealed that R. cummunis seed oil is made up of eight (8) fatty acids with the bulk being ricinoleic acid at 81.51 %. Ricinoleic acid is the main fatty acid used in oleochemical industries. C. megalobotrys seed oil is made up of five (5) fatty acids, the most abundant being Linoleic acid which makes up 58.01 % of the seed oil. The other two significant fatty acids in C. megalobotrys seed oil are palmitic and oleic acids at 19.51 % and 18.37 %, respectively. These acids are important as starting materials in soap, cosmetic, and pharmaceutical industries. The fatty acids of the two seed oils absorb light at the ultraviolet region of the electromagnetic spectrum. This means that cosmetic products made from these seed oils will be effective in protecting the human skin against ultraviolet radiation. The FT-IR peaks for the two seed oils show that even though these seed oils are made up of different fatty acids, the active sites of their fatty acids are similar, implying that these seed oils can be used as starting materials in similar industries.


2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Brahim Ait Mohand ◽  
Abderraouf El Antari ◽  
Fatiha Benkhalti

Pistacia lentiscus is an aromatic member of the Anacardiaceae family, endemic to the Mediterranean regions, which produces red and black oleaginous seeds in maturity. Our study focuses on the characterization of Pistacia lentiscus seed oils from three localities of High Atlas Mountain in the Azilal region of Morocco. Our results showed a very appreciable oil yield reaching more than 21% which clearly differs between the three sites studied (21.33 ± 0.17% in Boizoghrane, 15.22 ± 0.10% in Tighanimine, and 7.67 ± 0.29% in Tawjanizm locality); the analysis of the total fatty acids composition revealed a predominance of the unsaturated fatty acids represented essentially by the oleic and linoleic fatty acids, and also the triglyceride composition was dominated mainly by POO + SOL, POL + SLL + PoOP, and OOO. This potential of the chemical composition offers the possibility of producing nutraceutical oil, which represents a source of income capable of insisting vulnerable local populations to protect this species from deforestation, thus maintaining biodiversity, and to reduce by this interest the migratory flow from marginal areas.


2016 ◽  
Vol 8 (2) ◽  
pp. 92
Author(s):  
Hamidou SENOU ◽  
Cai X. ZHENG ◽  
Gabriel SAMAKE ◽  
Mamadou B. TRAORE ◽  
Fousseni FOLEGA ◽  
...  

<p class="1Body">The methyl esters of fatty acids composition of the oil from <em>jatropha curcas</em> seeds were analyzed by gas chromatography-mass spectrometer GC-MS. Fourteen components were found to be representative with 99.52% of the total content of seed oils. The main constituents were unsaturated fatty acids (71.93%) and saturated fatty acids (27.59%). For the saturated fatty acids composition such as palmitic and stearic acid, the rate was 15.80% and 10.79%, respectively. Linoleic acid (39.58%) and oleic acid (30.41%) were obtained in highest concentration among the unsaturated fatty acids identified in the seeds oil of <em>Jatropha curcas</em> from Guizhou. This value also justifies the fluidity of the oil at room temperature. A high percentage of polyunsaturated fatty acids (39.58%) and a slightly lower rate of monounsaturated fatty acids (32.35%) were also observed. The seed oils profile of Guizhou <em>Jatropha curcas</em> presents the desirable fatty acid C14 to C18 and interesting features for the biodiesel production.</p>


2004 ◽  
Vol 59 (5-6) ◽  
pp. 330-334 ◽  
Author(s):  
Fotini Malisiova ◽  
Sophia Hatziantoniou ◽  
Kostas Dimas ◽  
Dimitrios Kletstas ◽  
Costas Demetzos

The seeds of the almond tree [(Prunus dulcis (Mill.) D. A. Webb. (syn. Prunus amygdalus)] were collected in two different periods of maturity and were studied for their lipid content. The total lipids (TL) were extracted by the Bligh-Dyer method and the lipid classes have been isolated by chromatographic techniques and were analyzed by HPTLC coupled with a flame ionization detector (HPTLC/FID) and GC-MS. The oils were found to be rich in neutral lipids (89.9% and 96.3% of total lipids) and low in polar lipids (10.1% and 3.7% of total lipids) for the immature and mature seed oils, respectively. The neutral lipid fraction consisted mainly of triacylglycerides whereas the polar lipids mainly consisted of phospholipids. GC-MS data showed that the main fatty acid for both oils was 9-octadecenoic acid (oleic acid). The unsaturated fatty acids were found as high as 89.4% and 89.7%, while the percentage of the saturated fatty acids was found 10.6% and 10.3% for the immature and mature seed oils, respectively. Liposomes were prepared from the isolated phospholipids using the thin lipid film methodology, and their physical properties were characterized. Cytotoxicity was found absent when assayed against normal and cancerous cell lines. These new formulations may have future applications for encapsulation and delivery of drugs and cosmetically active ingredients.


1960 ◽  
Vol 38 (6) ◽  
pp. 805-812 ◽  
Author(s):  
Mary J. Chisholm ◽  
C. Y. Hopkins

The seed oil of Asclepiassyriaca L., family Asclepidaceae, was examined by gas chromatography and distillation of the methyl esters. The fatty acids were found to include a considerable proportion of cis-11-octadecenoic acid, which has not been observed previously in seed oils. It was obtained as a concentrate [Formula: see text] by low-temperature crystallization of the C18 acids and identified as 11,12-dihydroxystearic acid. The amount of 11-octadecenoic acid in the oil was determined by oxidative splitting of the total fatty acids and estimation of the resulting azelaic and undecanedioic acids by gas chromatography.The C16 acids included 9,12-hexadecadienoic acid, which is rare in seed oils,and an unusually large proportion of 9-hexadecenoic acid. The percentage composition of the fatty acids was estimated from the data as follows: palmitic 4,9-hexadecenoic 10, 9,12-hexadecadienoic 2, stearic < 1, oleic 15, 11-octadecenoic 15, linoleic 53, linolenic < 1. The unsaturated acids have the cis configuration.


Sign in / Sign up

Export Citation Format

Share Document