Investigation on the Generalized Hydrodynamic Force and Response of a Flexible Body at Different Reference Coordinate System

2021 ◽  
Vol 58 (6) ◽  
pp. 348-357
Author(s):  
Kyeonguk Heo ◽  
Yoon-Rak Choi
1975 ◽  
Vol 26 ◽  
pp. 21-26

An ideal definition of a reference coordinate system should meet the following general requirements:1. It should be as conceptually simple as possible, so its philosophy is well understood by the users.2. It should imply as few physical assumptions as possible. Wherever they are necessary, such assumptions should be of a very general character and, in particular, they should not be dependent upon astronomical and geophysical detailed theories.3. It should suggest a materialization that is dynamically stable and is accessible to observations with the required accuracy.


2021 ◽  
Author(s):  
Taher Mun ◽  
Nae-Chyun Chen ◽  
Ben Langmead

AbstractMotivationAs more population genetics datasets and population-specific references become available, the task of translating (“lifting”) read alignments from one reference coordinate system to another is becoming more common. Existing tools generally require a chain file, whereas VCF files are the more common way to represent variation. Existing tools also do not make effective use of threads, creating a post-alignment bottleneck.ResultsLevioSAM is a tool for lifting SAM/BAM alignments from one reference to another using a VCF file containing population variants. LevioSAM uses succinct data structures and scales efficiently to many threads. When run downstream of a read aligner, levioSAM completes in less than 13% the time required by an aligner when both are run with 16 threads.Availabilityhttps://github.com/alshai/[email protected], [email protected]


2009 ◽  
Vol 1 (sup1) ◽  
pp. 8-10
Author(s):  
Kirill Zamarashkin ◽  
Nikolai Zamarashkin

Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2428 ◽  
Author(s):  
Qian Deng ◽  
Shuliang Zou ◽  
Hongbin Chen ◽  
Weixiong Duan

Attachment changing in demolition robots has a high docking accuracy requirement, so it is hard for operators to control this process remotely through the perspective of a camera. To solve this problem, this study investigated positioning error and proposed a method of error compensation to achieve a highly precise attachment changing process. This study established a link parameter model for the demolition robot, measured the error in the attachment changing, introduced a reference coordinate system to solve the coordinate transformation from the dock spot of the robot’s quick-hitch equipment to the dock spot of the attachment, and realized error compensation. Through calculation and experimentation, it was shown that the error compensation method proposed in this study reduced the level of error in attachment changing from the centimeter to millimeter scale, thereby meeting the accuracy requirements for attachment changing. This method can be applied to the remote-controlled attachment changing process of demolition robots, which provides the basis for the subsequent automatic changing of attachments. This has the potential to be applied in nuclear facility decommissioning and dismantling, as well as other radioactive environments.


2020 ◽  
Vol 142 (3) ◽  
Author(s):  
Yan Xu ◽  
Weidong Zhu ◽  
Wei Fan ◽  
Caijing Yang ◽  
Weihua Zhang

Abstract A new three-dimensional moving Timoshenko beam element is developed for dynamic analysis of a moving load problem with a very long beam structure. The beam has small deformations and rotations, and bending, shear, and torsional deformations of the beam are considered. Since the dynamic responses of the beam are concentrated on a small region around the moving load and most of the long beam is at rest, owing to the damping effect, the beam is truncated with a finite length. A control volume that is attached to the moving load is introduced, which encloses the truncated beam, and a reference coordinate system is established on the left end of the truncated beam. The arbitrary Lagrangian–Euler method is used to describe the relationship of the position of a particle on the beam between the reference coordinate system and the global coordinate system. The truncated beam is spatially discretized using the current beam elements. Governing equations of a moving element are derived using Lagrange’s equations. While the whole beam needs to be discretized in the finite element method or modeled in the modal superposition method (MSM), only the truncated beam is discretized in the current formulation, which greatly reduces degrees-of-freedom and increases the efficiency. Furthermore, the efficiency of the present beam element is independent of the moving load speed, and the critical or supercritical speed range of the moving load can be analyzed through the present method. After the validation of the current formulation, a dynamic analysis of three-dimensional train–track interaction with a non-ballasted track is conducted. Results are in excellent agreement with those from the commercial software simpack where the MSM is used, and the calculation time of the current formulation is one-third of that of simpack. The current beam element is accurate and more efficient than the MSM for moving load problems of long three-dimensional beams. The derivation of the current beam element is straightforward, and the beam element can be easily extended for various other moving load problems.


2019 ◽  
Vol 35 (17) ◽  
pp. 3151-3153 ◽  
Author(s):  
Johannes Rainer ◽  
Laurent Gatto ◽  
Christian X Weichenberger

Abstract Summary Bioinformatics research frequently involves handling gene-centric data such as exons, transcripts, proteins and their positions relative to a reference coordinate system. The ensembldb Bioconductor package retrieves and stores Ensembl-based genetic annotations and positional information, and furthermore offers identifier conversion and coordinates mappings for gene-associated data. In support of reproducible research, data are tied to Ensembl releases and are kept separately from the software. Premade data packages are available for a variety of genomes and Ensembl releases. Three examples demonstrate typical use cases of this software. Availability and implementation ensembldb is part of Bioconductor (https://bioconductor.org/packages/ensembldb). Supplementary information Supplementary data are available at Bioinformatics online.


Sign in / Sign up

Export Citation Format

Share Document