docking accuracy
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 8)

H-INDEX

12
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Tang Shidi ◽  
Chen Ruiqi ◽  
Lin Mengru ◽  
Lin Qingde ◽  
Zhu Yanxiang ◽  
...  

AutoDock VINA is one of the most-used docking tools in the early stage of modern drug discovery. It uses a Monte-Carlo based iterated search method and multithreading parallelism scheme on multicore machines to improve docking accuracy and speed. However, virtual screening from huge compound databases is common for modern drug discovery, which puts forward a great demand for higher docking speed of AutoDock VINA. Therefore, we propose a fast method VINA-GPU, which expands the Monte-Carlo based docking lanes into thousands of ones coupling with a largely reduced number of search steps in each lane. Furthermore, we develop a heterogeneous OpenCL implementation of VINA-GPU that leverages thousands of computational cores of a GPU, and obtains a maximum of 403-fold acceleration on docking runtime when compared with a quad-threaded AutoDock VINA implementation. In addition, a heuristic function was fitted to determine the proper size of search steps in each lane for a convenient usage. The VINA-GPU code can be freely available at https://github.com/DeltaGroupNJUPT/Vina-GPU for academic usage.


2021 ◽  
Author(s):  
Tang Shidi ◽  
Chen Ruiqi ◽  
Lin Mengru ◽  
Lin Qingde ◽  
Zhu Yanxiang ◽  
...  

AutoDock VINA is one of the most-used docking tools in the early stage of modern drug discovery. It uses a Monte-Carlo based iterated search method and multithreading parallelism scheme on multicore machines to improve docking accuracy and speed. However, virtual screening from huge compound databases is common for modern drug discovery, which puts forward a great demand for higher docking speed of AutoDock VINA. Therefore, we propose a fast method VINA-GPU, which expands the Monte-Carlo based docking lanes into thousands of ones coupling with a largely reduced number of search steps in each lane. Furthermore, we develop a heterogeneous OpenCL implementation of VINA-GPU that leverages thousands of computational cores of a GPU, and obtains a maximum of 403-fold acceleration on docking runtime when compared with a quad-threaded AutoDock VINA implementation. In addition, a heuristic function was fitted to determine the proper size of search steps in each lane for a convenient usage. The VINA-GPU code can be freely available at https://github.com/DeltaGroupNJUPT/VINA-GPU for academic usage.


Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4502
Author(s):  
Qian Deng ◽  
Shuliang Zou ◽  
Hongbin Chen ◽  
Weixiong Duan

The process of changing the attachment of a demolition robot is a complex operation and requires a high docking accuracy, so it is hard for operators to control this process remotely through the camera’s perspective. To solve this problem, this paper studies trajectory planning for changing a demolition robot attachment. This paper establishes a link parameter model of the demolition robot; the position and attitude of the attachment are obtained through a camera, the optimal docking point is calculated to minimize the distance error during angle alignment for attachment change, the inverse kinemics of the demolition robot are solved, the trajectory planning algorithm and visualization program are programmed, and then the trajectory planning for the demolition robot attachment changing method is proposed. The results of calculations and experiments show that the method in this paper can meet the accuracy, efficiency, and safety requirements of demolition robot attachment changing, and it has promising application prospects in the decommissioning and dismantling of nuclear facilities and other radioactive environments.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2428 ◽  
Author(s):  
Qian Deng ◽  
Shuliang Zou ◽  
Hongbin Chen ◽  
Weixiong Duan

Attachment changing in demolition robots has a high docking accuracy requirement, so it is hard for operators to control this process remotely through the perspective of a camera. To solve this problem, this study investigated positioning error and proposed a method of error compensation to achieve a highly precise attachment changing process. This study established a link parameter model for the demolition robot, measured the error in the attachment changing, introduced a reference coordinate system to solve the coordinate transformation from the dock spot of the robot’s quick-hitch equipment to the dock spot of the attachment, and realized error compensation. Through calculation and experimentation, it was shown that the error compensation method proposed in this study reduced the level of error in attachment changing from the centimeter to millimeter scale, thereby meeting the accuracy requirements for attachment changing. This method can be applied to the remote-controlled attachment changing process of demolition robots, which provides the basis for the subsequent automatic changing of attachments. This has the potential to be applied in nuclear facility decommissioning and dismantling, as well as other radioactive environments.


2020 ◽  
Vol 26 (42) ◽  
pp. 7555-7580 ◽  
Author(s):  
Vladimir B. Sulimov ◽  
Danil C. Kutov ◽  
Alexey V. Sulimov

Background: Design of small molecules which are able to bind to the protein responsible for a disease is the key step of the entire process of the new medicine discovery. Atomistic computer modeling can significantly improve effectiveness of such design. The accurate calculation of the free energy of binding a small molecule (a ligand) to the target protein is the most important problem of such modeling. Docking is one of the most popular molecular modeling methods for finding ligand binding poses in the target protein and calculating the protein-ligand binding energy. This energy is used for finding the most active compounds for the given target protein. This short review aims to give a concise description of distinctive features of docking programs focusing on computation methods and approximations influencing their accuracy. Methods: This review is based on the peer-reviewed research literature including author’s own publications. The main features of several representative docking programs are briefly described focusing on their characteristics influencing docking accuracy: force fields, energy calculations, solvent models, algorithms of the best ligand pose search, global and local optimizations, ligand and target protein flexibility, and the simplifications made for the docking accelerating. Apart from other recent reviews focused mainly on the performance of different docking programs, in this work, an attempt is made to extract the most important functional characteristics defining the docking accuracy. Also a roadmap for increasing the docking accuracy is proposed. This is based on the new generation of docking programs which have been realized recently. These programs and respective new global optimization algorithms are described shortly. Results: Several popular conventional docking programs are considered. Their search of the best ligand pose is based explicitly or implicitly on the global optimization problem. Several algorithms are used to solve this problem, and among them, the heuristic genetic algorithm is distinguished by its popularity and an elaborate design. All conventional docking programs for their acceleration use the preliminary calculated grids of protein-ligand interaction potentials or preferable points of protein and ligand conjugation. These approaches and commonly used fitting parameters restrict strongly the docking accuracy. Solvent is considered in exceedingly simplified approaches in the course of the global optimization and the search for the best ligand poses. More accurate approaches on the base of implicit solvent models are used frequently for more careful binding energy calculations after docking. The new generation of docking programs are developed recently. They find the spectrum of low energy minima of a protein-ligand complex including the global minimum. These programs should be more accurate because they do not use a preliminary calculated grid of protein-ligand interaction potentials and other simplifications, the energy of any conformation of the molecular system is calculated in the frame of a given force field and there are no fitting parameters. A new docking algorithm is developed and fulfilled specially for the new docking programs. This algorithm allows docking a flexible ligand into a flexible protein with several dozen mobile atoms on the base of the global energy minimum search. Such docking results in improving the accuracy of ligand positioning in the docking process. The adequate choice of the method of molecular energy calculations also results in the better docking positioning accuracy. An advancement in the application of quantum chemistry methods to docking and scoring is revealed. Conclusion: The findings of this review confirm the great demand in docking programs for discovery of new medicine substances with the help of molecular modeling. New trends in docking programs design are revealed. These trends are focused on the increase of the docking accuracy at the expense of more accurate molecular energy calculations without any fitting parameters, including quantum-chemical methods and implicit solvent models, and by using new global optimization algorithms which make it possible to treat flexibility of ligands and mobility of protein atoms simultaneously. Finally, it is shown that all the necessary prerequisites for increasing the docking accuracy can be accomplished in practice.


INDIAN DRUGS ◽  
2019 ◽  
Vol 56 (06) ◽  
pp. 77-85
Author(s):  
A. Joshi ◽  
◽  
H Bhojwani ◽  
U Joshi

A total of 95 crystal structures of CDK2 were selected after considering criteria such as resolution and absence of missing residues in the active site; and subjected to cross-docking. 14 out of 95 crystal structures exhibited docking accuracy for greater than 70% of ligands at RMSD cut off 2Å in the cross- docking studies. These 14 crystal structures were selected for the second part of the study, which included validation using DUD sets and enrichment calculations. 8 out of 14 crystal structures possessed the enrichment factor of >10 at 1% of the ranked database. ROC-AUC, AUAC, RIE, and BEDROC were calculated for these 8 crystal structures. 2WXV produced maximum BEDROC (0.768, at α=8) and RIE (11.22). 2WXV as a single initial crystal structure in the virtual screening protocol is likely to produce more accurate results than any other single crystal structure.


2019 ◽  
Vol 47 (W1) ◽  
pp. W35-W42 ◽  
Author(s):  
Jiahua He ◽  
Jun Wang ◽  
Huanyu Tao ◽  
Yi Xiao ◽  
Sheng-You Huang

AbstractInteractions between nuclide acids (RNA/DNA) play important roles in many basic cellular activities like transcription regulation, RNA processing, and protein synthesis. Therefore, determining the complex structures between RNAs/DNAs is crucial to understand the molecular mechanism of related RNA/DNA–RNA/DNA interactions. Here, we have presented HNADOCK, a user-friendly web server for nucleic acid (NA)–nucleic acid docking to model the 3D complex structures between two RNAs/DNAs, where both sequence and structure inputs are accepted for RNAs, while only structure inputs are supported for DNAs. HNADOCK server was tested through both unbound structure and sequence inputs on the benchmark of 60 RNA–RNA complexes and compared with the state-of-the-art algorithm SimRNA. For structure input, HNADOCK server achieved a high success rate of 71.7% for top 10 predictions, compared to 58.3% for SimRNA. For sequence input, HNADOCK server also obtained a satisfactory performance and gave a success rate of 83.3% when the bound RNA templates are included or 53.3% when excluding those bound RNA templates. It was also found that inclusion of the inter-RNA base-pairing information from RNA–RNA interaction prediction can significantly improve the docking accuracy, especially for the top prediction. HNADOCK is fast and can normally finish a job in about 10 minutes. The HNADOCK web server is available at http://huanglab.phys.hust.edu.cn/hnadock/.


2019 ◽  
Vol 20 (5) ◽  
pp. 501-521 ◽  
Author(s):  
Surovi Saikia ◽  
Manobjyoti Bordoloi

Molecular docking is a process through which small molecules are docked into the macromolecular structures for scoring its complementary values at the binding sites. It is a vibrant research area with dynamic utility in structure-based drug-designing, lead optimization, biochemical pathway and for drug designing being the most attractive tools. Two pillars for a successful docking experiment are correct pose and affinity prediction. Each program has its own advantages and drawbacks with respect to their docking accuracy, ranking accuracy and time consumption so a general conclusion cannot be drawn. Moreover, users don’t always consider sufficient diversity in their test sets which results in certain programs to outperform others. In this review, the prime focus has been laid on the challenges of docking and troubleshooters in existing programs, underlying algorithmic background of docking, preferences regarding the use of docking programs for best results illustrated with examples, comparison of performance for existing tools and algorithms, state of art in docking, recent trends of diseases and current drug industries, evidence from clinical trials and post-marketing surveillance are discussed. These aspects of the molecular drug designing paradigm are quite controversial and challenging and this review would be an asset to the bioinformatics and drug designing communities.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2321 ◽  
Author(s):  
Wei Xiao ◽  
Disha Wang ◽  
Zihao Shen ◽  
Shiliang Li ◽  
Honglin Li

Water molecules play an important role in modeling protein-ligand interactions. However, traditional molecular docking methods often ignore the impact of the water molecules by removing them without any analysis or keeping them as a static part of the proteins or the ligands. Hence, the accuracy of the docking simulations will inevitably be damaged. Here, we introduce a multi-body docking program which incorporates the fixed or the variable number of the key water molecules in protein-ligand docking simulations. The program employed NSGA II, a multi-objective optimization algorithm, to identify the binding poses of the ligand and the key water molecules for a protein. To this end, a force-field-based hydration-specific scoring function was designed to favor estimate the binding affinity considering the key water molecules. The program was evaluated in aspects of the docking accuracy, cross-docking accuracy, and screening efficiency. When the numbers of the key water molecules were treated as fixed-length optimization variables, the docking accuracy of the multi-body docking program achieved a success rate of 80.58% for the best RMSD values for the recruit of the ligands smaller than 2.0 Å. The cross-docking accuracy was investigated on the presence and absence of the key water molecules by four protein targets. The screening efficiency was assessed against those protein targets. Results indicated that the proposed multi-body docking program was with good performance compared with the other programs. On the other side, when the numbers of the key water molecules were treated as variable-length optimization variables, the program obtained comparative performance under the same three evaluation criterions. These results indicated that the multi-body docking with the variable numbers of the water molecules was also efficient. Above all, the multi-body docking program developed in this study was capable of dealing with the problem of the water molecules that explicitly participating in protein-ligand binding.


Sign in / Sign up

Export Citation Format

Share Document