Effect of p-Phenylenediamine to Rat Skin

2005 ◽  
Vol 34 (9) ◽  
pp. 1330-1335 ◽  
Keyword(s):  
1973 ◽  
Vol 30 (02) ◽  
pp. 363-370
Author(s):  
D Thilo ◽  
E Böhm

SummaryExperiments with injury of the abdominal rat skin were carried out to examine the haemostatic system mechanism in vivo after zero to 30 seconds bleeding time. In the bleeding area only a few platelet aggregates could be found with no primary platelet thrombus. After 3.5 second bleeding time the first fibrin strands have been observed at the site of injury. The hypothesis is put forward that there is a very fast reacting haemostatic mechanism which results in the fibrin formation already at 3.5 seconds.


Author(s):  
Rakesh Patel ◽  
Hardik Patel ◽  
Ashok Baria

The aim of this work was to prepare and evaluate the topical carbopol gel formulation containing ketoconazole encapsulated liposomes. Ketoconazole loaded liposomes were prepared by thin film hydration technique. The prepared liposomes were incorporated into 1% carbopol gel, and the systems were evaluated for in-vitro drug release, drug retention into skin and in-vitro antifungal activity. The in-vitro permeation of ketoconazole using wistar albino rat skin from liposomal gel was compared with that of plain drug gel and also with plain drug cream containing 2% w/w of ketoconazole. The release of ketoconazole from liposomal gel was much slower than from non liposomal formulations. Gel containing liposomal ketoconazole showed maximum antifungal activity after 30 hours over plain ketoconazole gel and cream formulations.


2020 ◽  
Vol 23 (03) ◽  
pp. 71-83
Author(s):  
Pratama Ferina Nadya ◽  
Umam Choirul ◽  
Ameliana Lidya ◽  
Nurahmanto Dwi

2020 ◽  
Vol 21 (4) ◽  
pp. 298-304
Author(s):  
Chih-Wen Fang ◽  
Ling-Chun Tsai ◽  
Yaw-Syan Fu ◽  
Ting-Yu Cheng ◽  
Pao-Chu Wu

Objective: The aim of the present study was to design nanocarriers for the topical application of rivastigmine. Methods: The effect of cosurfactants, hydrophilic gel and loading amount on the permeability of rivastigmine through rat skin was evaluated. Skin irritation tests and stability tests were performed to evaluate the utility of tested formulations. Results: The results showed that the microemulsion formation and characteristics of drug-loaded formulations were related to many parameters of the components. When using microemulsion systems as a vehicle, the permeation rate remarkably increased about 13.2~24.3-fold and the lag time was significantly shortened from 24 h to 4.7 h. Formulations containing a cosurfactant of Diethylene Glycol Monobutyl Ether (DEGBE) showed higher enhancement effect, while increasing the loading dose from 0.5% to 5% further increased the flux about 2.1-fold and shortened the lag time. Conclusion: The drug-loaded experimental formulation did not cause skin irritation and had good stability at 20ºC and 40ºC storage for at least 3 months. The result showed that gel-based microemulsion formulation could be a promising approach for topical administration.


2020 ◽  
Vol 15 (3) ◽  
pp. 1934578X1990068
Author(s):  
Noriyuki Uchida ◽  
Masayoshi Yanagi ◽  
Hiroki Hamada

Composite nanoparticles composed of an anionic phospholipid of 1,2-dipalmitoyl-sn-glycero-3-phosphorylglycerol (DPPG) and paclitaxel (PTX) were successfully prepared by mixing them in water followed by a subsequent heating/cooling process. The size of DPPG-PTX nanoparticle could be easily tuned by ultrasonic fragmentation. Upon addition of small-sized fluorescently labeled paclitaxel (FLPTX) nanoparticles with DPPG (DPPG-FLPTX) to rat skin tissue, part of the FLPTX molecules permeated to the stratum corneum.


Sign in / Sign up

Export Citation Format

Share Document