scholarly journals THE POTENTIAL EFFECT OF NITROGEN REMOVAL PROCESSES ON THE δ15N FROM DIFFERENT TAXA IN THE MEXICAN SUBTROPICAL NORTH EASTERN PACIFIC

2012 ◽  
Vol 27 (2) ◽  
pp. 25
Author(s):  
J. Camalich ◽  
A. Sánchez ◽  
S. Aguíñiga ◽  
E. F. Balart

The sub-tropical north eastern Pacific is one of the major zones in the ocean where nitrogen is removed by bacterial processes which are enhanced by low oxygen concentrations commonly found in the water column along the Pacific coast upwelling areas. It is well established that the nitrogen isotopic signal (δ15N) increases in relation to trophic levels but little is known about the transfer of this δ15N signal from the dissolved fraction to higher trophic levels in oceanic regions with low oxygen. The objectives of this study are: 1) to report δ15N values from different abiotic and biotic components collected in the low-oxygen oceanic region in front of Bahía Magdalena (Mexican subtropical north-eastern Pacific); 2) to compare the δ15N of different trophic levels with analogous organisms in regions where nitrogen fixation is the dominating process, which will allow us to evaluate the actual transfer of δ15N enriched in 15N through the trophic web up to top predators. The δ15N was higher in both abiotic and biological compared to those reported from zones where N fixation is the dominating process. Oxygen concentrations in the oceanic area in front of Bahía Magdalena are low (< 2ml/l) at shallow water depths (< 100m) but not anoxic. Despite this we found that the δ15N signal reflects denitrification and this signal is transferred up though the food web. Efecto potencial del proceso de remoción de nitrógeno sobre el δ15N de distintos taxa en el Pacífico noreste mexicano subtropical El Pacífico subtropical noroeste es una de las zonas más importantes del océano en las cuales el nitrógeno es utilizado por procesos bacterianos que se intensifican bajo condiciones bajas de oxígeno como las que se encuentran comúnmente en las zonas de surgencia a lo largo de las costas del Pacifico. El incremento en la señal isotópica de N con respecto al nivel trófico (δ15N) es bien conocido, sin embargo su transferencia desde la fracción disuelta hasta niveles tróficos altos no ha sido estudiada a profundidad en zonas del océano en las cuales las concentraciones de oxígeno son bajas. Los objetivos de este estudio son: 1) reportar valores de δ15N de diferentes compartimentos (abióticos y bióticos) recolectados en la zona oceánica de baja concentración de oxígeno frente a Bahía Magdalena (Pacifico subtropical noreste Mexicano); 2) comparar δ15N de diferentes niveles tróficos con organismos análogos de regiones en las cuales la fijación de nitrógeno es el procesos dominante; esto nos permitirá evaluar la transferencia real de δ15N enriquecido en 15N a través de la red trófica hasta depredadores tope. El δ15N de los componentes abióticos y abióticos fue más alto que los reportados en regiones con una alta tasa de fijación de N. Las concentraciones de oxígeno en la zona de estudio son bajas (< 2ml/l) a profundidades superficiales (< 100m) aunque no anóxicas. No obstante, la señal de δ15N refleja desnitrificación y esta señal es transferida a lo largo de la cadena trófica.

2016 ◽  
Vol 13 (6) ◽  
pp. 1977-1989 ◽  
Author(s):  
Helena Hauss ◽  
Svenja Christiansen ◽  
Florian Schütte ◽  
Rainer Kiko ◽  
Miryam Edvam Lima ◽  
...  

Abstract. The eastern tropical North Atlantic (ETNA) features a mesopelagic oxygen minimum zone (OMZ) at approximately 300–600 m depth. Here, oxygen concentrations rarely fall below 40 µmol O2 kg−1, but are expected to decline under future projections of global warming. The recent discovery of mesoscale eddies that harbour a shallow suboxic (< 5 µmol O2 kg−1) OMZ just below the mixed layer could serve to identify zooplankton groups that may be negatively or positively affected by ongoing ocean deoxygenation. In spring 2014, a detailed survey of a suboxic anticyclonic modewater eddy (ACME) was carried out near the Cape Verde Ocean Observatory (CVOO), combining acoustic and optical profiling methods with stratified multinet hauls and hydrography. The multinet data revealed that the eddy was characterized by an approximately 1.5-fold increase in total area-integrated zooplankton abundance. At nighttime, when a large proportion of acoustic scatterers is ascending into the upper 150 m, a drastic reduction in mean volume backscattering (Sv) at 75 kHz (shipboard acoustic Doppler current profiler, ADCP) within the shallow OMZ of the eddy was evident compared to the nighttime distribution outside the eddy. Acoustic scatterers avoided the depth range between approximately 85 to 120 m, where oxygen concentrations were lower than approximately 20 µmol O2 kg−1, indicating habitat compression to the oxygenated surface layer. This observation is confirmed by time series observations of a moored ADCP (upward looking, 300 kHz) during an ACME transit at the CVOO mooring in 2010. Nevertheless, part of the diurnal vertical migration (DVM) from the surface layer to the mesopelagic continued through the shallow OMZ. Based upon vertically stratified multinet hauls, Underwater Vision Profiler (UVP5) and ADCP data, four strategies followed by zooplankton in response to in response to the eddy OMZ have been identified: (i) shallow OMZ avoidance and compression at the surface (e.g. most calanoid copepods, euphausiids); (ii) migration to the shallow OMZ core during daytime, but paying O2 debt at the surface at nighttime (e.g. siphonophores, Oncaea spp., eucalanoid copepods); (iii) residing in the shallow OMZ day and night (e.g. ostracods, polychaetes); and (iv) DVM through the shallow OMZ from deeper oxygenated depths to the surface and back. For strategy (i), (ii) and (iv), compression of the habitable volume in the surface may increase prey–predator encounter rates, rendering zooplankton and micronekton more vulnerable to predation and potentially making the eddy surface a foraging hotspot for higher trophic levels. With respect to long-term effects of ocean deoxygenation, we expect avoidance of the mesopelagic OMZ to set in if oxygen levels decline below approximately 20 µmol O2 kg−1. This may result in a positive feedback on the OMZ oxygen consumption rates, since zooplankton and micronekton respiration within the OMZ as well as active flux of dissolved and particulate organic matter into the OMZ will decline.


2015 ◽  
Vol 12 (21) ◽  
pp. 18315-18344 ◽  
Author(s):  
H. Hauss ◽  
S. Christiansen ◽  
F. Schütte ◽  
R. Kiko ◽  
M. Edvam Lima ◽  
...  

Abstract. The eastern tropical North Atlantic (ETNA) features a mesopelagic oxygen minimum zone (OMZ) at approximately 300–600 m depth. Here, oxygen concentrations rarely fall below 40 μmol O2 kg−1, but are thought to decline in the course of climate change. The recent discovery of mesoscale eddies that harbour a shallow suboxic (< 5 μmol O2 kg−1) OMZ just below the mixed layer could serve to identify zooplankton groups that may be negatively or positively affected by on-going ocean deoxygenation. In spring 2014, a detailed survey of a suboxic anticyclonic modewater eddy (ACME) was carried out near the Cape Verde Ocean Observatory (CVOO), combining acoustic and optical profiling methods with stratified multinet hauls and hydrography. The multinet data revealed that the eddy was characterized by an approximately 1.5-fold increase in total area-integrated zooplankton abundance. A marked reduction in acoustic target strength (derived from shipboard ADCP, 75kHz) within the shallow OMZ at nighttime was evident. Acoustic scatterers were avoiding the depth range between about 85 to 120 m, where oxygen concentrations were lower than approximately 20 μmol O2 kg−1, indicating habitat compression to the oxygenated surface layer. This observation is confirmed by time-series observations of a moored ADCP (upward looking, 300 kHz) during an ACME transit at the CVOO mooring in 2010. Nevertheless, part of the diurnal vertical migration (DVM) from the surface layer to the mesopelagic continued through the shallow OMZ. Based upon vertically stratified multinet hauls, Underwater Vision Profiler (UVP5) and ADCP data, four strategies have been identified followed by zooplankton in response to the eddy OMZ: (i) shallow OMZ avoidance and compression at the surface (e.g. most calanoid copepods, euphausiids), (ii) migration to the shallow OMZ core during daytime, but paying O2 debt at the surface at nighttime (e.g. siphonophores, Oncaea spp., eucalanoid copepods), (iii) residing in the shallow OMZ day and night (e.g. ostracods, polychaetes), and iv) DVM through the shallow OMZ from deeper oxygenated depths to the surface and back. For strategy (i), (ii) and (iv), compression of the habitable volume in the surface may increase prey-predator encounter rates, rendering zooplankton more vulnerable to predation and potentially making the eddy surface a foraging hotspot for higher trophic levels. With respect to long-term effects of ocean deoxygenation, we expect zooplankton avoidance of the mesopelagic OMZ to set in if oxygen levels decline below approximately 20 μmol O2 kg−1. This may result in a positive feedback on the OMZ oxygen consumption rates, since zooplankton respiration within the OMZ as well as active flux of dissolved and particulate organic matter into the OMZ will decline.


Author(s):  
Brian J. Wilsey

Top predators have effects that can ‘cascade down’ on lower trophic levels. Because of this cascading effect, it matters how many trophic levels are present. Predators are either ‘sit and wait’ or ‘active’. Wolves are top predators in temperate grasslands and can alter species composition of smaller-sized predators, prey, and woody and herbaceous plant species, either through direct effects or indirect effects (‘Ecology of Fear’). In human derived grasslands, invertebrate predators fill a similar ecological role as wolves. Migrating populations of herbivores tend to be more limited by food than non-migratory populations. The phenology and synchrony of births vary among prey species in a way that is consistent with an adaptation to predation. Precocious species have highly synchronous birth dates to satiate predators. Non-precocious species (‘hiders’) have asynchronous births. Results from studies that manipulate both predators and food support the hypothesis that bottom-up and top-down effects interact.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alberto Baudena ◽  
Enrico Ser-Giacomi ◽  
Donatella D’Onofrio ◽  
Xavier Capet ◽  
Cedric Cotté ◽  
...  

AbstractOceanic frontal zones have been shown to deeply influence the distribution of primary producers and, at the other extreme of the trophic web, top predators. However, the relationship between these structures and intermediate trophic levels is much more obscure. In this paper we address this knowledge gap by comparing acoustic measurements of mesopelagic fish concentrations to satellite-derived fine-scale Lagrangian Coherent Structures in the Indian sector of the Southern Ocean. First, we demonstrate that higher fish concentrations occur more frequently in correspondence with strong Lagrangian Coherent Structures. Secondly, we illustrate that, while increased fish densities are more likely to be observed over these structures, the presence of a fine-scale feature does not imply a concomitant fish accumulation, as other factors affect fish distribution. Thirdly, we show that, when only chlorophyll-rich waters are considered, front intensity modulates significantly more the local fish concentration. Finally, we discuss a model representing fish movement along Lagrangian features, specifically built for mid-trophic levels. Its results, obtained with realistic parameters, are qualitatively consistent with the observations and the spatio-temporal scales analysed. Overall, these findings may help to integrate intermediate trophic levels in trophic models, which can ultimately support management and conservation policies.


Sign in / Sign up

Export Citation Format

Share Document