CFD-Analyse zur Leistungssteigerung eines Orbit-Motors*/CFD investigation of the performance of an orbital motor - CFD investigation of the influence of the rotor teeth number and eccentricity on the performance of an orbital motor

2015 ◽  
Vol 105 (06) ◽  
pp. 433-439
Author(s):  
A. Mishev ◽  
T. Stehle

Vorgestellt wird ein neuer Orbit-Motor mit innovativem Rotor-Design. Der Motor wurde grundlegend mit der Methode „Computational Fluid Dynamics (CFD) Analysis“ (numerische Strömungsmechanik) simulativ untersucht und entwickelt. Sechs volle dreidimensionale transiente CFD-Orbit-Motor-Modelle wurden entwickelt und mit dem CFD-Modell eines Standard-Orbit-Motors verglichen. Dabei weisen die CFD-Simulationsergebnisse für die neuen Orbit-Motoren-Modellvarianten einen deutlichen Anstieg des Motordrehmoments sowie wesentlich geringere Druck- und Gasvolumen-Anteil-Pulsationen gegenüber dem Standard-Orbit-Motor auf.   In this paper a new orbital motor with innovative rotor design is presented and fundamentally investigated by means of CFD analysis. Six full 3D transient CFD orbital motor models were designed and compared to a standard orbital motor. The results from the simulation showed a substantial increase of the motor torque and reduction of the pressure ripple and gas volume fraction ripple of all six models. Furthermore the flow rate and the volumetric efficiency of all orbital motor models were predicted.

2014 ◽  
Vol 580-583 ◽  
pp. 2050-2054
Author(s):  
Jiang Chuan Liu ◽  
Zhi Gang Yin ◽  
Wei Ji

The treatment of the urban sewage and the Organic industrial wastewater has been transformed from removing of the organics to the Removal of organic matter and nitrogen, phosphorus. According to the deficiency of the Traditional wastewater treatment process,the micro-pressure inner loop reactor is put forward to solve the Anaerobic, anoxic and aerobic environmental issues in this paper. Aiming at the newly development of the micro-pressure inner loop reactor, based on the methods of Computational Fluid Dynamics, using the methods of computational fluid dynamics, By analyzing the velocity distribution field, flow lines, the gas volume fraction and other factors, the result shows that the reactor Meets the actual needs of the project, and provides a theoretical basis for practical engineering equipment.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 650
Author(s):  
Guangtai Shi ◽  
Dandan Yan ◽  
Xiaobing Liu ◽  
Yexiang Xiao ◽  
Zekui Shu

The gas volume fraction (GVF) often changes from time to time in a multiphase pump, causing the power capability of the pump to be increasingly affected. In the purpose of revealing the pressure load characteristics of the multiphase pump impeller blade with the gas-liquid two-phase case, firstly, a numerical simulation which uses the SST k-ω turbulence model is verified with an experiment. Then, the computational fluid dynamics (CFD) software is employed to investigate the variation characteristics of static pressure and pressure load of the multiphase pump impeller blade under the diverse inlet gas volume fractions (IGVFs) and flow rates. The results show that the effect of IGVF on the head and hydraulic efficiency at a small flow rate is obviously less than that at design and large flow rates. The static pressure on the blade pressure side (PS) is scarcely affected by the IGVF. However, the IGVF has an evident effect on the static pressure on the impeller blade suction side (SS). Moreover, the pump power capability is descended by degrees as the IGVF increases, and it is also descended with the increase of the flow rate at the impeller inlet. Simultaneously, under the same IGVF, with the increase of the flow rate, the peak value of the pressure load begins to gradually move toward the outlet and its value from hub to shroud is increased. The research results have important theoretical significance for improving the power capability of the multiphase pump impeller.


2016 ◽  
Vol 819 ◽  
pp. 356-360
Author(s):  
Mazharul Islam ◽  
Jiří Fürst ◽  
David Wood ◽  
Farid Nasir Ani

In order to evaluate the performance of airfoils with computational fluid dynamics (CFD) tools, modelling of transitional region in the boundary layer is very critical. Currently, there are several classes of transition-based turbulence model which are based on different methods. Among these, the k-kL- ω, which is a three equation turbulence model, is one of the prominent ones which is based on the concept of laminar kinetic energy. This model is phenomenological and has several advantageous features. Over the years, different researchers have attempted to modify the original version which was proposed by Walter and Cokljat in 2008 to enrich the modelling capability. In this article, a modified form of k-kL-ω transitional turbulence model has been used with the help of OpenFOAM for an investigative CFD analysis of a NACA 4-digit airfoil at range of angles of attack.


RBRH ◽  
2021 ◽  
Vol 26 ◽  
Author(s):  
Mayara Francisca da Silva ◽  
Fábio Veríssimo Gonçalves ◽  
Johannes Gérson Janzen

ABSTRACT Computational Fluid Dynamics (CFD) simulations of a leakage in a pressurized pipe were undertaken to determine the empirical effects of hydraulic and geometric factors on the leakage flow rate. The results showed that pressure, leakage area and leakage form, influenced the leakage flow rate significantly, while pipe thickness and mean velocity did not influence the leakage flow rate. With relation to the interactions, the effect of pressure upon leakage flow rate depends on leakage area, being stronger for great leakage areas; the effects of leakage area and pressure on leakage flow rate is more pronounced for longitudinal leakages than for circular leakages. Finally, our results suggest that the equations that predict leakage flow rate in pressurized pipes may need a revision.


Sign in / Sign up

Export Citation Format

Share Document