scholarly journals Obtaining microdispersed iron-nickel powder in the process of electrochemical processing of VNZh type heavy tungsten alloys

2021 ◽  
Vol 12 (2-2021) ◽  
pp. 148-153
Author(s):  
O. G. Kuznetsova ◽  
◽  
A. M. Levin ◽  
M. A. Sevostyanov ◽  
◽  
...  

The process of electrochemical processing of the VNZh type heavy tungsten alloy (wt. %: 80 W, 16 Ni, 4 Fe) under the action of direct and alternating current of industrial frequency in an ammonia-alkaline solution has been investigated. It was found, that the process is accompanied by the transition of tungsten from the alloy to the solution and the formation of a microdispersed powder, based on iron and nickel.

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5756
Author(s):  
A. Raja Annamalai ◽  
A. Muthuchamy ◽  
Muthe Srikanth ◽  
Senthilnathan Natarajan ◽  
Shashank Acharya ◽  
...  

The effect of adding molybdenum to the heavy tungsten alloy of W-Ni-Fe on its material characteristics was examined in the current study. The elemental powders of tungsten, iron, nickel, and molybdenum, with a composition analogous to W-3Fe-7Ni-xMo (x = 0, 22.5, 45, 67.5 wt.%), were fabricated using the spark plasma sintering (SPS) technique at a sintering temperature of 1400 °C and under pressure of 50 MPa. The sintered samples were subjected to microstructural characterization and tested for mechanical strength. The smallest grain size of 9.99 microns was observed for the 45W-45Mo alloy. This alloy also gave the highest tensile and yield strengths of 1140 MPa and 763 MPa, respectively. The hardness increased with the increased addition of molybdenum. The high level of hardness was observed for 67.5Mo with a 10.8% increase in the base alloy’s hardness. The investigation resulted in the alloy of 45W-7Ni-3Fe-45Mo, observed to provide optimum mechanical properties among all the analyzed samples.


Toxics ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 66 ◽  
Author(s):  
Ola Wasel ◽  
Jennifer Freeman

Tungsten is a refractory metal that is used in a wide range of applications. It was initially perceived that tungsten was immobile in the environment, supporting tungsten as an alternative for lead and uranium in munition and military applications. Recent studies report movement and detection of tungsten in soil and potable water sources, increasing the risk of human exposure. In addition, experimental research studies observed adverse health effects associated with exposure to tungsten alloys, raising concerns on tungsten toxicity with questions surrounding the safety of exposure to tungsten alone or in mixtures with other metals. Tungsten is commonly used as an alloy with nickel and cobalt in many applications to adjust hardness and thermal and electrical conductivity. This review addresses the current state of knowledge in regard to the mechanisms of toxicity of tungsten in the absence or presence of other metals with a specific focus on mixtures containing nickel and cobalt, the most common components of tungsten alloy.


2007 ◽  
Vol 434-435 ◽  
pp. 367-370 ◽  
Author(s):  
J.S.C. Jang ◽  
J.C. Fwu ◽  
L.J. Chang ◽  
G.J. Chen ◽  
C.T. Hsu

2002 ◽  
Vol 35 (1) ◽  
pp. 47-53 ◽  
Author(s):  
L Rapoport ◽  
V Leshchinsky ◽  
M Lvovsky ◽  
I Lapsker ◽  
Yu Volovik ◽  
...  

1947 ◽  
Vol 39 (4) ◽  
pp. 351 ◽  
Author(s):  
Abner Brenner ◽  
Polly Burkhead ◽  
Emma Seegmiller
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document