scholarly journals Synthesis of highly active ETS-10-based titanosilicate for heterogeneously catalyzed transesterification of triglycerides

2019 ◽  
Vol 10 ◽  
pp. 2039-2061
Author(s):  
Muhammad A Zaheer ◽  
David Poppitz ◽  
Khavar Feyzullayeva ◽  
Marianne Wenzel ◽  
Jörg Matysik ◽  
...  

In this contribution, the preparation of hierarchically structured ETS-10-based catalysts exhibiting notably higher activity in the conversion of triolein with methanol compared to microporous titanosilicate is presented. Triolein, together with its unsaturated analog trilinolein, represent the most prevalent triglycerides in oils. The introduction of mesopores by post-synthetic treatment with hydrogen peroxide and a subsequent calcination step results in the generation of an additional active surface with Brønsted basic sites becoming accessible for triolein and enhancing the rate of transesterification. The resulting catalyst exhibits a comparable triolein conversion (≈73%) after 4 h of reaction to CaO (≈76%), which is reportedly known to be highly active in the transesterification of triglycerides. In addition, while CaO showed a maximum conversion of 83% after 24 h, the ETS-10-based catalyst reached 100% after 8 h, revealing its higher stability compared to CaO. The following characteristics of the catalysts were experimentally addressed – crystal structure (X-ray diffraction, transmission electron microscopy), crystal shape and size (scanning electron microscopy, laser diffraction), textural properties (N2 sorption, Hg porosimetry), presence of hydroxyl groups and active sites (temperature-programmed desorption of NH3 and CO2, 29Si magic angle spinning nuclear magnetic resonance (NMR)), mesopore accessibility and diffusion coefficient of adsorbed triolein (pulsed field gradient NMR), pore interconnectivity (variable temperature and exchange spectroscopy experiments using hyperpolarized 129Xe NMR) and oxidation state of Ti atoms (electron paramagnetic resonance). The obtained results enabled the detailed understanding of the impact of the post-synthetic treatment applied to the ETS-10 titanosilicate with respect to the catalytic activity in the heterogeneously catalyzed transesterification of triglycerides.

2018 ◽  
Vol 8 (9) ◽  
pp. 1634 ◽  
Author(s):  
Paloma Vinaches ◽  
Alex Rojas ◽  
Ana de Alencar ◽  
Enrique Rodríguez-Castellón ◽  
Tiago Braga ◽  
...  

An alternative method for the introduction of aluminum into the STW zeolitic framework is presented. HPM-1, a chiral STW zeolite with helical pores, was synthesized in the pure silica form, and an aluminum source was added by in situ generated seeds. Displacements of the peak positions in the Al samples were found in the X-ray diffractograms, indicating the possible incorporation of the heteroatom into the framework. Using an analysis of the 29Si and 27Al magic-angle spinning nuclear magnetic resonance (MAS NMR) spectra, we concluded that the aluminum was effectively introduced into the framework. The (AlTETRAHEDRAL/AlOCTAHEDRAL) ratio and its textural properties were studied to explain the catalytic ethanol conversion results at medium temperatures. The sample with the lowest Si/Al ratio showed the best results due to its higher surface area and pore volume, in comparison to those observed for the sample with the highest Si/Al ratio, and due to its higher bulk tetrahedral aluminum content, in comparison to the intermediate Si/Al ratio sample. All catalysts were selective to ethylene and diethyl ether, confirming the presence of acidic sites.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3812
Author(s):  
Jifeng Li ◽  
Ting Fang ◽  
Wenjing Yan ◽  
Fei Zhang ◽  
Yunhui Xu ◽  
...  

In this study, oxidized chitosan grafted cashmere fibers (OCGCFs) were obtained by crosslinking the oxidized chitosan onto cashmere fibers by amide covalent modification. A novel method was developed for the selective oxidation of the C6 primary hydroxyls into carboxyl groups for chitosan. The effect of oxidization reaction parameters of HNO3/H3PO4–NaNO2 mediated oxidation system on the oxidation degree, structure, and properties of chitosan were investigated. The chemical structure of the oxidized chitosan was characterized by solid-state cross-polarization magic angle spinning carbon-13 Nuclear Magnetic Resonance (CP/MAS 13C-NMR), Fourier transform infrared spectroscopy (FT-IR), and its morphology was investigated by scanning electron microscopy (SEM). Subsequently, the effect of the oxidized chitosan grafting on OCGCF was examined, and the physical properties, moisture regain, and antibacterial activity of OCGCFs were also evaluated. The results showed that oxidation of chitosan mostly occurred at the C6 primary hydroxyl groups. Moreover, an oxidized chitosan with 43.5–56.8% carboxyl content was realized by ranging the oxidation time from 30 to 180 min. The resulting OCGCF had a C–N amido bond, formed as a result of the reaction between the primary amines in the cashmere fibers and the carboxyl groups in the oxidized chitosan through the amide reaction. The OCGCF exhibited good moisture regain and remarkable bacteriostasis against both Staphylococcus aureus and Escherichia coli bacteria with its durability.


2015 ◽  
Vol 112 (46) ◽  
pp. 14156-14161 ◽  
Author(s):  
Seung Bin Baek ◽  
Dohyun Moon ◽  
Robert Graf ◽  
Woo Jong Cho ◽  
Sung Woo Park ◽  
...  

Crystallographic observation of adsorbed gas molecules is a highly difficult task due to their rapid motion. Here, we report the in situ single-crystal and synchrotron powder X-ray observations of reversible CO2 sorption processes in an apparently nonporous organic crystal under varying pressures at high temperatures. The host material is formed by hydrogen bond network between 1,3,5-tris-(4-carboxyphenyl)benzene (H3BTB) and N,N-dimethylformamide (DMF) and by π–π stacking between the H3BTB moieties. The material can be viewed as a well-ordered array of cages, which are tight packed with each other so that the cages are inaccessible from outside. Thus, the host is practically nonporous. Despite the absence of permanent pathways connecting the empty cages, they are permeable to CO2 at high temperatures due to thermally activated molecular gating, and the weakly confined CO2 molecules in the cages allow direct detection by in situ single-crystal X-ray diffraction at 323 K. Variable-temperature in situ synchrotron powder X-ray diffraction studies also show that the CO2 sorption is reversible and driven by temperature increase. Solid-state magic angle spinning NMR defines the interactions of CO2 with the organic framework and dynamic motion of CO2 in cages. The reversible sorption is attributed to the dynamic motion of the DMF molecules combined with the axial motions/angular fluctuations of CO2 (a series of transient opening/closing of compartments enabling CO2 molecule passage), as revealed from NMR and simulations. This temperature-driven transient molecular gating can store gaseous molecules in ordered arrays toward unique collective properties and release them for ready use.


2018 ◽  
Vol 232 (3) ◽  
pp. 409-430 ◽  
Author(s):  
Sarah K. Sihvonen ◽  
Kelly A. Murphy ◽  
Nancy M. Washton ◽  
Muhammad Bilal Altaf ◽  
Karl T. Mueller ◽  
...  

AbstractMineral dust aerosol participates in heterogeneous chemistry in the atmosphere. In particular, the hydroxyl groups on the surface of aluminosilicate clay minerals are important for heterogeneous atmospheric processes. These functional groups may be altered by acidic processing during atmospheric transport. In this study, we exposed kaolinite (KGa-1b) and montmorillonite (STx-1b) to aqueous sulfuric acid and then rinsed the soluble reactants and products off in order to explore changes to functional groups on the mineral surface. To quantify the changes due to acid treatment of edge hydroxyl groups, we use19F magic angle spinning nuclear magnetic resonance spectroscopy and a probe molecule, 3,3,3-trifluoropropyldimethylchlorosilane. We find that the edge hydroxyl groups (OH) increase in both number and density with acid treatment. Chemical reactions in the atmosphere may be impacted by the increase in OH at the mineral edge.


Sign in / Sign up

Export Citation Format

Share Document