scholarly journals Nanomechanics of few-layer materials: do individual layers slide upon folding?

2020 ◽  
Vol 11 ◽  
pp. 1801-1808
Author(s):  
Ronaldo J C Batista ◽  
Rafael F Dias ◽  
Ana P M Barboza ◽  
Alan B de Oliveira ◽  
Taise M Manhabosco ◽  
...  

Folds naturally appear on nanometrically thin materials, also called “2D materials”, after exfoliation, eventually creating folded edges across the resulting flakes. We investigate the adhesion and flexural properties of single-layered and multilayered 2D materials upon folding in the present work. This is accomplished by measuring and modeling mechanical properties of folded edges, which allows for the experimental determination of the bending stiffness (κ) of multilayered 2D materials as a function of the number of layers (n). In the case of talc, we obtain κ ∝ n 3 for n ≥ 5, indicating no interlayer sliding upon folding, at least in this thickness range. In contrast, tip-enhanced Raman spectroscopy measurements on edges in folded graphene flakes, 14 layers thick, show no significant strain. This indicates that layers in graphene flakes, up to 5 nm thick, can still slip to relieve stress, showing the richness of the effect in 2D systems. The obtained interlayer adhesion energy for graphene (0.25 N/m) and talc (0.62 N/m) is in good agreement with recent experimental results and theoretical predictions. The obtained value for the adhesion energy of graphene on a silicon substrate is also in agreement with previous results.

2020 ◽  
Author(s):  
Ronaldo J C Batista ◽  
Rafael F Dias ◽  
Ana P M Barboza ◽  
Alan B de Oliveira ◽  
Taise M Manhabosco ◽  
...  

Folds naturally appear on nanometrically thin (also called 2D) materials after exfoliation, eventually creating folded edges across the resulting flakes. In the present work, we investigate the adhesion and flexural properties of single and multilayered 2D materials upon folding. This is accomplished by measuring and modeling mechanical properties of folded edges, which allow the experimental determination of the scaling for the bending stiffness (κ) of a multilayered 2D material with its number of layers (n). In the case of talc, we obtain κ proportional to n3 for n ≥ 5, establishing that there is no interlayer sliding upon folding, at least in this thickness range. Such a result, if applicable to other materials, would imply that layers in folds might be either compressed (at the inner part of the fold) or stretched (at its outer part), leading to changes in their vibrational properties relative to a flat flake. This hypothesis was confirmed by near-field tip-enhanced Raman spectroscopy of a multilayer graphene fold.


Author(s):  
A Almasi

New closed-form expressions are introduced for ax-symmetric progressive axial collapse of pipes that use a plastic folding mechanism based on variable length of an active plastic hinge zone. A procedure for determination of a load—displacement curve of axial pipe collapse is presented. Theoretical predictions give a good agreement with the experimental results owing to the influence of presented new refinements.


2001 ◽  
Vol 440 ◽  
pp. 359-380 ◽  
Author(s):  
JAMES M. ACTON ◽  
HERBERT E. HUPPERT ◽  
M. GRAE WORSTER

The spreading of a two-dimensional, viscous gravity current propagating over and draining into a deep porous substrate is considered both theoretically and experimentally. We first determine analytically the rate of drainage of a one-dimensional layer of fluid into a porous bed and find that the theoretical predictions for the downward rate of migration of the fluid front are in excellent agreement with our laboratory experiments. The experiments suggest a rapid and simple technique for the determination of the permeability of a porous medium. We then combine the relationships for the drainage of liquid from the current through the underlying medium with a formalism for its forward motion driven by the pressure gradient arising from the slope of its free surface. For the situation in which the volume of fluid V fed to the current increases at a rate proportional to t3, where t is the time since its initiation, the shape of the current takes a self-similar form for all time and its length is proportional to t2. When the volume increases less rapidly, in particular for a constant volume, the front of the gravity current comes to rest in finite time as the effects of fluid drainage into the underlying porous medium become dominant. In this case, the runout length is independent of the coefficient of viscosity of the current, which sets the time scale of the motion. We present numerical solutions of the governing partial differential equations for the constant-volume case and find good agreement with our experimental data obtained from the flow of glycerine over a deep layer of spherical beads in air.


1968 ◽  
Vol 90 (1) ◽  
pp. 63-70 ◽  
Author(s):  
G. S. H. Lock ◽  
J. C. Gunn

A theoretical analysis of conduction through and free convection from a tapered, downward-projecting fin immersed in an isothermal quiescent fluid is presented. The problem is solved by assuming quasi-one-dimensional heat conduction in the fin and matching the solution to that of the convection system, which is treated as a boundary layer problem. For an infinite Prandtl number, solutions are derived which take the form of a power law temperature distribution along the fin. The effect of this power (n) on heat transfer, drag, and the corresponding boundary layer profiles is discussed. It is shown that n is independent of the fin profile and dependent on a single nondimensional group χ. The theoretical results for infinite Prandtl number are compared with corresponding results derived from previous work using a Prandtl number of unity. The effect of Prandtl number on the determination of n and consequently the fin effectiveness is found to be extremely small. The results of an experimental program are also presented. These consist of temperature profiles and the n — χ relation for different fin geometries and surrounding fluids. Comparison with the theoretical predictions reveals good agreement.


1978 ◽  
Vol 22 (01) ◽  
pp. 32-53 ◽  
Author(s):  
Milton Martin

A theoretical method is derived for predicting trim angle and speed coefficient at the inception of propoising of prismatic planing hulls. Although equations are derived for the surge, pitch, and heave degrees of freedom, it is seen that the effect of surge is small at ordinary operating trim angles. Comparisons of theoretical predictions with existing experimental data on coupled pitch and heave porpoising show reasonably good agreement for a wide range of speed coefficients, load coefficients, and deadrise angles. The theory may also be used for estimating the natural frequencies and damping characteristics of prismatic hulls in the stable, high-speed planing range.


2021 ◽  
Author(s):  
Ali Barhoumi ◽  
Mohammed El idrissi ◽  
Abdellah Zeroual ◽  
Abdessamad Tounsi ◽  
Salam Bakkas ◽  
...  

Abstract In the current work, the chemical reactivity of some trivalent phosphorus derivatives R2PR' towards polyhaloalkanes CCI3POR''2 was studied by the quantum method DFT/B3LYP/6-311G (d,p). The introduction of substituents for the trivalent phosphorus derivative and polyhaloalkane allowed us to have more information on these reactions. On the one hand, the calculation of reactivity indices derived from the DFT/B3LYP/6-311G(d,p) method and the gapLUMO-HOMO show that trivalent organophosphorus derivatives behave as nucleophiles, while polyhaloalkanes act as electrophiles. On the other hand, the calculation of the activation barrier and the determination of the free enthalpy variation prove that the kinetic and thermodynamic products of these reactions result from the nucleophilic attack of the phosphorus atom on the chlorine halogen. All these theoretical predictions are in very good agreement with the experimental results.


1969 ◽  
Vol 62 (4) ◽  
pp. 663-670 ◽  
Author(s):  
Lars Carlborg

ABSTRACT Oestrogens administered in lower doses than necessary to induce full cornification of the mouse vagina induce mucification. It was shown previously that the degree of mucification could be estimated by quantitative determination of sialic acids. A suitable parameter for oestrogen assay was the measurement of vaginal sialic acid concentration which exhibited a clear cut dose response curve. Eleven assays of various oestrogens were performed with this method. Their estimated relative potencies were in good agreement with other routine oestrogen assays. A statistically sufficient degree of precision was found. The sensitivity was of the same order, or slightly higher, than the Allen-Doisy test.


1967 ◽  
Vol 13 (6) ◽  
pp. 515-520 ◽  
Author(s):  
Genevieve Farese ◽  
Janice L Schmidt ◽  
Milton Mager

Abstract A completely automated analysis is described for the determination of serum calcium with glyoxal bis (2-hydroxyanil) solution (GBHA). The method is simple and precise, and the data obtained are in good agreement with results obtained by the manual GBHA procedure.


Sign in / Sign up

Export Citation Format

Share Document