scholarly journals Polarity in cuticular ridge development and insect attachment on leaf surfaces of Schismatoglottis calyptrata (Araceae)

2021 ◽  
Vol 12 ◽  
pp. 1326-1338
Author(s):  
Venkata A Surapaneni ◽  
Tobias Aust ◽  
Thomas Speck ◽  
Marc Thielen

The plant cuticle is a multifunctional barrier that separates the organs of the plant from the surrounding environment. Cuticular ridges are microscale wrinkle-like cuticular protrusions that occur on many flower and leaf surfaces. These microscopic ridges can help against pest insects by reducing the frictional forces experienced when they walk on the leaves and might also provide mechanical stability to the growing plant organs. Here, we have studied the development of cuticular ridges on adaxial leaf surfaces of the tropical Araceae Schismatoglottis calyptrata. We used polymer replicas of adaxial leaf surfaces at various ontogenetic stages to study the morphological changes occurring on the leaf surfaces. We characterized the replica surfaces by using confocal laser scanning microscopy and commercial surface analysis software. The development of cuticular ridges is polar and the ridge progression occurs basipetally with a specific inclination to the midrib on Schismatoglottis calyptrata leaves. Using Colorado potato beetles as model species, we performed traction experiments on freshly unrolled and adult leaves and found low walking frictional forces of insects on both of these surfaces. The changes in the micro- and macroscale morphology of the leaves should improve our understanding of the way that plants defend themselves against insect herbivores.

Author(s):  
Venkata A. Surapaneni ◽  
Georg Bold ◽  
Thomas Speck ◽  
Marc Thielen

AbstractCuticular ridges on plant surfaces can control insect adhesion and wetting behaviour and might also offer stability to underlying cells during growth. The growth of the plant cuticle and its underlying cells possibly results in changes in the morphology of cuticular ridges and may also affect their function. We present spatial and temporal patterns in cuticular ridge development on the leaf surfaces of the model plant, Hevea brasiliensis. We have identified, by confocal laser scanning microscopy of polymer leaf replicas, an acropetally directed progression of ridges during the ontogeny of Hevea brasiliensis leaf surfaces. The use of Colorado potato beetles (Leptinotarsa decemlineata) as a model insect species has shown that the changing dimensions of cuticular ridges on plant leaves during ontogeny have a significant impact on insect traction forces and act as an effective indirect defence mechanism. The traction forces of walking insects are significantly lower on mature leaf surfaces compared with young leaf surfaces. The measured walking traction forces exhibit a strong negative correlation with the dimensions of the cuticular ridges.


2014 ◽  
Vol 89 (4) ◽  
pp. 480-486 ◽  
Author(s):  
F. Almeida ◽  
F. Oliveira ◽  
R. Neves ◽  
N. Siqueira ◽  
R. Rodrigues-Silva ◽  
...  

AbstractPolycystic echinococcosis, caused by the larval stage (metacestode) of the small-sized tapeworm, Echinococcus vogeli, is an emerging parasitic zoonosis of great public health concern in the humid tropical rainforests of South and Central America. Because morphological and morphometric characteristics of the metacestode are not well known, hydatid cysts from the liver and the mesentery were examined from patients following surgical procedures. Whole mounts of protoscoleces with rostellar hooks were examined under light and confocal laser scanning microscopy. Measurements were made of both large and small hooks, including the total area, total length, total width, blade area, blade length, blade width, handle area, handle length and handle width. The results confirmed the 1:1 arrangement of hooks in the rostellar pad and indicated, for the first time, that the morphometry of large and small rostellar hooks varies depending upon the site of infection. Light and confocal microscopy images displayed clusters of calcareous corpuscles in the protoscoleces. In conclusion, morphological features of large and small rostellar hooks of E. vogeli are adapted to a varied environment within the vertebrate host and such morphological changes in calcareous corpuscles occur at different stages in the maturation of metacestodes.


2020 ◽  
Vol 7 (11) ◽  
pp. 201319
Author(s):  
Venkata A. Surapaneni ◽  
Georg Bold ◽  
Thomas Speck ◽  
Marc Thielen

Cuticular ridges on plant surfaces can control insect adhesion and wetting behaviour and might also offer stability to underlying cells during growth. The growth of the plant cuticle and its underlying cells possibly results in changes in the morphology of cuticular ridges and may also affect their function. We present spatial and temporal patterns in cuticular ridge development on the leaf surfaces of the model plant, Hevea brasiliensis . We have identified, by confocal laser scanning microscopy of polymer leaf replicas, an acropetally directed progression of ridges during the ontogeny of Hevea brasiliensis leaf surfaces. The use of Colorado potato beetles (Leptinotarsa decemlineata) as a model insect species has shown that the changing dimensions of cuticular ridges on plant leaves during ontogeny have a significant impact on insect traction forces and act as an effective indirect defence mechanism. The traction forces of walking insects are significantly lower on mature leaf surfaces compared with young leaf surfaces. The measured walking traction forces exhibit a strong negative correlation with the dimensions of the cuticular ridges.


2019 ◽  
Vol 58 (5) ◽  
pp. 690-697
Author(s):  
Yan Ma ◽  
Ying Ji ◽  
Jing Yang ◽  
Wen Li ◽  
Jiajuan Li ◽  
...  

Abstract Bud emergence 46 (BEM46), a member of the α/β hydrolase superfamily, has been reported to be essential for polarized growth in Neurospora crassa. However, the role of BEM46 in aspergillus fumigatus (A. fumigatus) remains unclear. In this study, we constructed an A. fumigatus strain expressing BEM46 fused with enhanced green fluorescent protein, and a Δbem46 mutant, to explore the localization and the role of growth of BEM46 in A. fumigatus, respectively. Confocal laser scanning microscopy revealed that BEM46 was dominantly expressed in the sites where hyphae germinated from conidia in A. fumigatus. When compared with the control strain, the Δbem46 mutant exhibited insignificant morphological changes but delayed germination. No significant changes were found regarding the radial growth of both strains in response to various antifungal agents. These results suggest that BEM46 plays an essential role in timely germination in A. fumigatus. From the observation of fluorescence localization, we infer that that BEM46 might be involved in polarized growth in A. fumigatus.


2007 ◽  
Vol 20 (10) ◽  
pp. 1222-1230 ◽  
Author(s):  
Luciano A. Rigano ◽  
Florencia Siciliano ◽  
Ramón Enrique ◽  
Lorena Sendín ◽  
Paula Filippone ◽  
...  

The phytopathogenic bacterium Xanthomonas axonopodis pv. citri is responsible for the canker disease affecting citrus plants throughout the world. Here, we have evaluated the role of bacterial attachment and biofilm formation in leaf colonization during canker development on lemon leaves. Crystal violet staining and confocal laser scanning microscopy analysis of X. axonopodis pv. citri strains expressing the green fluorescent protein were used to evaluate attachment and biofilm formation on abiotic and biotic (leaf) surfaces. Wild-type X. axonopodis pv. citri attached to and formed a complex, structured biofilm on glass in minimal medium containing glucose. Similar attachment and structured biofilm formation also were seen on lemon leaves. An X. axonopodis pv. citri gumB mutant strain, defective in production of the extracellular polysaccharide xanthan, did not form a structured biofilm on either abiotic or biotic surfaces. In addition, the X. axonopodis pv. citri gumB showed reduced growth and survival on leaf surfaces and reduced disease symptoms. These findings suggest an important role for formation of biofilms in the epiphytic survival of X. axonopodis pv. citri prior to development of canker disease.


2010 ◽  
Vol 277 (1691) ◽  
pp. 2113-2120 ◽  
Author(s):  
Sebastian Busch ◽  
Robin Seidel ◽  
Olga Speck ◽  
Thomas Speck

This study reveals in detail the mechanism of self-repair during secondary growth in the vines Aristolochia macrophylla and Aristolochia ringens based on morphological data. For a comprehensive understanding of the underlying mechanisms during the self-repair of lesions in the sclerenchymatous cylinder of the stem, which are caused by internal growth stresses, a classification of morphological changes in the cells involved in the repair process is required. In an early stage of self-repair, we observed morphological changes as a mere extension of the turgescent cortex cells surrounding the lesion, whereby the cell wall extends locally through visco-elastic/plastic deformation without observable cell wall synthesis. Later stages involve typical cell growth and cell division. Several successive phases of self-repair were investigated by light microscopy of stained samples and confocal laser-scanning microscopy in fluorescence mode. The results indicate that A. macrophylla and A. ringens respond to lesions caused by internal growth stresses with a sophisticated self-repair mechanism comprising several phases of different repair modes.


2002 ◽  
Vol 11 (4) ◽  
pp. 313-324 ◽  
Author(s):  
Anne Mari Rokstad ◽  
Synnøve Holtan ◽  
Berit Strand ◽  
Bjørg Steinkjer ◽  
Liv Ryan ◽  
...  

Microencapsulation of genetically engineered cells may have important applications as delivery systems for therapeutic proteins. However, optimization of the microcapsules with regard to mechanical stability, cell growth, and secretion of proteins is necessary in order to evaluate the future use of this delivery technology. We have explored the growth, survival, and secretion of therapeutic proteins from 293-EBNA cells producing endostatin (293 endo cells) and JJN3 myeloma cells producing hepatocyte growth factor (HGF) that have been embedded in various types of alginate capsules. Parameters that affect capsule integrity such as homogenous and inhomogenous gel cores and addition of an outer poly-l-lysine (PLL)–alginate coating were evaluated in relation to cell functions. When cells were encapsulated, the PLL layer was found to be absolutely required for the capsule integrity. The JJN3 and 293 endo cells displayed completely different growth and distribution patterns of live and dead cells within the microcapsules, as shown by 3D pictures reconstructed from images taken with confocal laser scanning microscopy (CLSM). Encapsulated JJN3 cells showed a bell-shaped growth and HGF secretion curve over a time period of 5 months. The 293 endo cells reached a plateau phase in growth after 23 days postencapsulation; however, after around 30 days a fraction of the microcapsules started to disintegrate. Microcapsule disintegration occurred with time irrespective of capsule and cell type, showing that alginate microcapsules possessing relatively high gel strength are not strong enough to keep proliferating cells within the microcapsules for prolonged time periods. Although this study shows that the stability of an alginate-based cell factory can be increased by a PLL–alginate coating, further improvement is necessary with regard to capsule integrity as well as controlling the cell growth before this technology can be used for therapy.


Parasitology ◽  
2003 ◽  
Vol 126 (1) ◽  
pp. 53-61 ◽  
Author(s):  
M. HULSTIJN ◽  
L. A. BARROS ◽  
R. H. NEVES ◽  
E. G. MOURA ◽  
J. R. MACHADO-SILVA

Host metabolic changes have been observed to affect Schistosoma mansoni egg production, worm survival and morphology. We examined worms recovered from streptozotocin-induced diabetic mice by morphometric and morphological analysis through brightfield and confocal laser scanning microscopy. Tegument thickness was slightly smaller and changes in the reproductive organs were observed in 23–30% and consecutively 88–100% of the worms. The testicular lobes had a large diminution of cells in one or more of the lobes, which was associated with a lack of spermatozoids in the seminal vesicle. Ovaries were atrophied, manifested by a complete or large reduction in oocytes but other parts of the reproductive system like the vitelline glands were mainly unaffected. Streptozotocin (STZ) instead of hyperglycaemia caused the degeneration since worms from mice injected with a non-diabetogenic dose, or with nicotinamide to prevent diabetes showed the same alterations. The drug did not affect worm survival or pairing. We conclude that STZ, an alkylating agent that provokes chromosome and DNA damage, changes the morphology of ovaries and testicular lobes in S. mansoni worms in vivo. This is the first report of STZ action in helminths and we suggest that STZ affects oogenesis and spermatogenesis and might cause sterilization of schistosomes.


2011 ◽  
Vol 75 (4) ◽  
pp. 513-519 ◽  
Author(s):  
Ariadna García-Herraiz ◽  
Rafael Leiva-García ◽  
Aránzazu Cañigral-Ortiz ◽  
Francisco Javier Silvestre ◽  
José García-Antón

Plant Disease ◽  
2021 ◽  
Author(s):  
Yang Zhou ◽  
Lei Zhang ◽  
Chuan-Ya Ji ◽  
Chingchai Chaisiri ◽  
Liangfen Yin ◽  
...  

Peach scab caused by Venturia carpophila, is one of the most destructive fungal diseases of peach worldwide, which seriously affects the peach production. Up to date, the infection process and pathogenesis of V. carpophila on peach remain unclear. Here, we present the infection behaviour of V. carpophila at the ultrastructural and cytological levels in peach leaves with combined microscopic investigations (e.g., light microscopy, confocal laser scanning microscopy, scanning electron microscopy and transmission electron microscopy). V. carpophila germinated at the tip of conidia and produced short germ tubes on peach leaf surfaces at 2 days post-inoculation (dpi). At 3 dpi, swollen tips of germ tubes differentiated into appressoria. At 5 dpi, penetration pegs produced by appressoria broke through the cuticle layer, and then differentiated into thick sub-cuticular hyphae in the pectin layer of the epidermal cell walls. At 10 dpi, the sub-cuticular hyphae extensively colonized in the pectin layer. The primary hyphae ramified into secondary hyphae and proliferated along with the incubation. At 15 dpi, the sub-cuticular hyphae divided laterally to form stromata between the cuticle layer and the cellulose layer of the epidermal cells. At 30 dpi, conidiophores developed from the sub-cuticular stromata. Finally, abundant conidiophores and new conidia appeared on leaf surfaces at 40 dpi. These results provide useful information for further understanding the V. carpophila pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document